精英家教网 > 高中数学 > 题目详情
(2011•朝阳区二模)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为
1
6
,第二轮检测不合格的概率为
1
10
,两轮检测是否合格相互没有影响.
(Ⅰ)求该产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).
分析:(Ⅰ)记“该产品不能销售”为事件A,然后利用对立事件的概率公式解之即可;
(Ⅱ)由已知可知X的取值为-320,-200,-80,40,160,然后根据n次独立重复试验中恰好发生k次的概率公式分别求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
解答:解  (Ⅰ)记“该产品不能销售”为事件A,则P(A)=1-(1-
1
6
)×(1-
1
10
)=
1
4

所以,该产品不能销售的概率为
1
4
.…(4分)
(Ⅱ)由已知,可知X的取值为-320,-200,-80,40,160.…(5分)
P(X=-320)=(
1
4
)4=
1
256

P(X=-200)=
C
1
4
•(
1
4
)3
3
4
=
3
64

P(X=-80)=
C
2
4
•(
1
4
)2•(
3
4
)2=
27
128

P(X=40)=
C
3
4
1
4
•(
3
4
)3=
27
64

P(X=160)=(
3
4
)4=
81
256
.…(10分)
所以X的分布列为
X -320 -200 -80 40 160
P
1
256
3
64
27
128
27
64
81
256
…(11分)
E(X)=-320×
1
256
-200×
3
64
-80×
27
128
+40×
27
64
+160×
81
256
=40
所以,均值E(X)为40.…(13分)
点评:本题主要考查了n次独立重复试验中恰好发生k次的概率,以及离散型随机变量的概率分别和数学期望,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设函数f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函数f(x)在[1,e]上的最小值;
(Ⅱ)若函数f(x)在[
12
,2]
上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)在长方形AA1B1B中,AB=2A1=4,C,C1分别是AB,A1B1的中点(如图).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图),已知D,E分别是A1B1,CC1的中点.
(Ⅰ)求证:C1D∥平面A1BE;
(Ⅱ)求证:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱锥C1-A1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知cosα=
3
5
,0<α<π,则tan(α+
π
4
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知函数f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的单调递增区间;
(Ⅱ)若f(
x0
2
)=
2
3
x0∈(-
π
4
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步练习册答案