精英家教网 > 高中数学 > 题目详情
14.某几何体的三视图如图所示,该几何体的表面积为(  )
A.12+$\sqrt{3}+\sqrt{7}$B.4+3$\sqrt{3}+\sqrt{7}$C.8+$\sqrt{3}+\sqrt{7}$D.4+$\sqrt{3}+\sqrt{7}$

分析 由已知中的三视图可得:该几何体是一个以正视图为底面的四棱锥,分别计算各个面的面积,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以正视图为底面的四棱锥,
其直观图如下所示:

底面BCDE的面积为:4,
侧面△ABC的面积为$\sqrt{3}$,
侧面△ABE和△ACD的面积均为2,
侧面△ADE的面积为$\sqrt{7}$,
故该几何体的表面积为8+$\sqrt{3}+\sqrt{7}$,
故选:C.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数y=sin($\frac{π}{3}$-2x),则函数在[-π,0]上的单调递减区间是[-$\frac{π}{12}$,0]和,[-π,-$\frac{7π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-$\frac{1}{2}{x^2}$-ax(a∈R).
(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)≥1在$[\frac{1}{2},+∞)$上恒成立,求实数a的取值范围;
(Ⅲ)如果函数$g(x)=f(x)-(a-\frac{1}{2}){x^2}$恰有两个不同的极值点x1,x2,证明:$\frac{{{x_1}+{x_2}}}{2}$<ln(2a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=3,则|$\overrightarrow{b}$|的最大值是$\sqrt{3}$;|$\overrightarrow{c}$|的取值范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在三棱锥S-ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=2a,且SA⊥平面ABC,则点A到平面SBC的距离为(  )
A.$\frac{3a}{2}$B.$\frac{2\sqrt{21}}{7}$aC.$\frac{5a}{2}$D.$\frac{7a}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.长方体各面所在平面将空间分成27部分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.若棱柱的底面边长相等,则它的各个侧面的面积相等
B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形
C.六角螺帽、三棱镜的外形都是棱柱
D.正四棱台的侧面不一定是等腰梯形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),设$\frac{x}{a}$+$\frac{y}{b}$=t,若以t为参数,求出双曲线的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实轴长为6,抛物线y2=20x的准线经过双曲线左焦点,过原点的直线与双曲线左、右两支分别交于A,B两点,P为双曲线上不同于A,B的任一点,当kPA,kPB存在时,kPA•kPB的值为(  )
A.$\frac{16}{9}$B.$\frac{4}{3}$C.$\frac{9}{16}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案