【题目】如图,在以
,
,
,
,
,
为顶点的五面体中,平面
平面
,
是边长为
的正三角形,直线
与平面
所成角为
.
![]()
(I)求证:
;
(Ⅱ)若
,四边形
为平行四边形,求平面
与平面
所成锐二面角的余弦值.
【答案】(I)证明见解析;(Ⅱ)
.
【解析】
(I)过
作
交
于点
,连接
,先证明
平面
,再由
平面
,得出
。
(Ⅱ)以
,
,
为轴,建立空间直角坐标系,分别求出平面
、平面
的法向量
、
,再由
得出平面
与平面
所成锐二面角的余弦值。
证明:(I)过
作
交
于点
,连接
,
由平面
平面
,得
平面
,∴
,
又
,
,∴
,∴
.
由直线
与平面
所成角为
,易得
,
由
,得
,又
,得
.
由
,
,
,
平面
,得
平面
,
平面
,∴
.
![]()
(Ⅱ)由(I),
,
,
两两垂直,以
为坐标原点,建立如图所示空间直角坐标系
,由题意
,
,∴
,
四边形
为平行四边形,∴
,
平面
,
平面
,∴
平面
,平面
平面
,∴
,
.
,
,
,
,
,
,
,
,
,
,
设平面
的法向量为
,由
,得
,取
,得
,
设平面
的法向量为
,
,
,取
,
,
,∴所求锐二面角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】已知△ABC的三边BC,CA,AB的中点分别是D(5,3),E(4,2),F(1,1).
(1)求△ABC的边AB所在直线的方程及点A的坐标;
(2)求△ABC的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型超市公司计划在
市新城区开设分店,为确定在新城区开设分店的个数,该公司对该市已开设分店的其他区的数据统计后得到下列信息(其中
表示在该区开设分店的个数,
表示这
个分店的年收入之和):
分店个数 | 2 | 3 | 4 | 5 | 6 |
年收入 | 250 | 300 | 400 | 450 | 600 |
(Ⅰ)该公司经过初步判断,可用线性回归模型拟合
与
的关系,求
关于
的回归方程;
(Ⅱ)假设该公司每年在新城区获得的总利润
(单位:万元)与
,
之间的关系为
,请根据(Ⅰ)中的线性回归方程,估算该公司在新城区开设多少个分店时,才能使新城区每年每个分店的平均利润最大.
参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对以下命题:
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是
;
③若一种彩票买一张中奖的概率是
,则买这种彩票一千张就会中奖;
④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点
是抛物线
上一定点,直线
的倾斜角互补,且与抛物线另交于
,
两个不同的点.
![]()
(1)求点
到其准线的距离;
(2)求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与
轴负半轴相交于点
,与
轴正半轴相交于点
.
(1)若过点
的直线
被圆
截得的弦长为
,求直线
的方程;
(2)若在以
为圆心,半径为
的圆上存在点
,使得
(
为坐标原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t20,60(单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:
租车时间t(分钟) | [20,30] | (30,40] | (40,50] | (50,60] |
频数 | 2 | 18 | 20 | 10 |
将上述租车时间的频率视为概率.
(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;
(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校组织的一次教师招聘共分笔试和面试两个环节,笔试环节共有20名大学毕业生参加,其中男、女生的比例恰好为
,其成绩的茎叶图如图所示.假设成绩在90分以上的考生可以进入面试环节.
![]()
(1)试比较男、女两组成绩平均分的大小,并求出女生组的方差;
(2)从男、女两组可以进入面试环节的考生中分别任取1人,求两人分差不小于3分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com