【题目】某校组织的一次教师招聘共分笔试和面试两个环节,笔试环节共有20名大学毕业生参加,其中男、女生的比例恰好为
,其成绩的茎叶图如图所示.假设成绩在90分以上的考生可以进入面试环节.
![]()
(1)试比较男、女两组成绩平均分的大小,并求出女生组的方差;
(2)从男、女两组可以进入面试环节的考生中分别任取1人,求两人分差不小于3分的概率.
【答案】(1)见解析;(2)![]()
【解析】
(1)平均成绩等于各数据之和除以总人数,代入计算比较即可,根据方差的公式代入计算即可;
(2)一一列举满足:男、女两组可以进入面试环节的考生中分别任取1人的基本事件,然后找到满足:两人分差不小于3分的基本事件,利用古典概型计算即可.
(1)男生组的平均分为
;
女生组的平均分为![]()
所以男生组的平均分低于女生组的平均分.
女生组的方差为:
![]()
![]()
(2)抽取情况为:91,91; 91,92; 91,93; 91,95;92,91; 92,92; 92,93; 92,95; 97,91; 97,92; 97,93; 97,95.总共有12种.
其中分差不小于3分的情况为91,95;92,95;97,91;97,92;97,93共5种.
所以所抽取的两人中,分差不小于3分的概率为
.
科目:高中数学 来源: 题型:
【题目】如图,在以
,
,
,
,
,
为顶点的五面体中,平面
平面
,
是边长为
的正三角形,直线
与平面
所成角为
.
![]()
(I)求证:
;
(Ⅱ)若
,四边形
为平行四边形,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,
轴的正半轴为极轴建立极坐标系,且曲线
的极坐标方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设直线
上的定点
在曲线
外且其到
上的点的最短距离为
,试求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如
且等于黄金分割比
,现从正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点A是抛物线
上到直线
的距离最短的点,点B是抛物线上异于点A的一点,直线AB与l交于P,过点P作y轴的平行线交抛物线于点C.
(1)求点A的坐标;
(2)求证:直线BC过定点;
(3)求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在
内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
![]()
(1)算出第三组
的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校从参加高二年级期末考试的学生中抽出一些学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),所得数据整理后,列出了如下频率分布表.
分组 | 频数 | 频率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合计 | C | 1 |
![]()
(1)在给出的样本频率分布表中,求A,B,C的值;
(2)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;
(3)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com