【题目】如图,四棱锥P-ABCD的底面是矩形,侧面PAD为等边三角形,AB=
,AD=
, PB=
.
(1)求证:平面PAD⊥平面ABCD;
(2)M是棱PD上一点,三棱锥M-ABC的体积为1.记三棱锥P-MAC的体积为
,三棱锥M-ACD的体积为
,求
.
![]()
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加
元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费
元,未租出的车每辆每月需要维护费
元.
(1)当每辆车的月租金定为
元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的
名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该所大学共有学生
人,试估计有多少位同学旅游费用支出在
元以上;
(Ⅲ)已知样本数据中旅游费用支出在
范围内的
名学生中有
名女生,
名男生,现想选其中
名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为
的函数
是奇函数.
(1) 求实数
的值;
(2) 判断并用定义证明该函数在定义域
上的单调性;
(3) 若方程
在
内有解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为圆
上一动点,圆心
关于
轴的对称点为
,点
分别是线段
上的点,且
.
(1)求点
的轨迹方程;
(2)直线
与点
的轨迹
只有一个公共点
,且点
在第二象限,过坐标原点
且与
垂直的直线
与圆
相交于
两点,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
的动直线
与椭圆相交于
两点,当直线
与
轴平行时,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在
轴上是否存在异于点
的定点
,使得直线
变化时,总有
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)的单调增区间;
(3)设α∈(0,
),则f(
)=2,求α的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com