精英家教网 > 高中数学 > 题目详情
已知f(x)=
(3a-2)x-2a,x≤1
logax,,x>1
在R上为增函数,那么a的取值范围是______.
依题意,有a>1且3a-2>0,
解得a>1,
又当x<1时,(3a-2)x-2a<a-2,
当x>1时,logax>0,
因为f(x)在R上单调递增,所以a-2≤0,
解得a≤2
综上:1<a≤2
故答案为:1<a≤2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
(3a-1)x+4a,x≤1
logax,x>1
是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A、(0,1)
B、(0,
1
3
)
C、[
1
7
1
3
)
D、[
1
7
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3a-2)x-2a,x≤1
logax,,x>1
在R上为增函数,那么a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3a-1)x+4a,x<1
ax,x≥1
是R上的减函数,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3a-1)x+4a,x<1
ax,x≥1
 是(-∞,+∞)上的减函数,则a的取值范围是
[
1
6
1
3
[
1
6
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3a-1)x+4a,x≤1
logax,x>1
是R上的减函数,则a的取值范围是
[
1
7
1
3
)
[
1
7
1
3
)

查看答案和解析>>

同步练习册答案