精英家教网 > 高中数学 > 题目详情
6.四面体ABCD及其三视图如图所示,点E、F、G、H分别是棱AB、BD、DC、CA的中点.
(1)证明:四边形EFGH是矩形;
(2)求四面体ABCD的表面积.
(3)求直线AB与平面EFGH夹角θ的正弦值.

分析 (1)证明:四边形EFGH是平行四边形,AD⊥平面BDC,即可证明四边形EFGH是矩形;
(2)S四面体ABCD=S△ABD+S△ACD+S△BCD+S△ABC,即可求四面体ABCD的表面积.
(3)以D为坐标原点建立空间直角坐标系,利用向量的方法求直线AB与平面EFGH夹角θ的正弦值.

解答 (1)证明:由该四面体的三视图可知,
BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1.
由题设可知,BC∥FG,BC∥EH,∴FG∥EH.
EF∥AD,HG∥AD,∴EF∥HG.
∴四边形EFGH是平行四边形.
又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC,
∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.
(2)解:由三视图可知,BD=DC=2,AD=1,则有AB=AC=$\sqrt{5}$,BC=2$\sqrt{2}$
∴S△ABD=S△ACD=$\frac{1}{2}×2×1$=1,S△BCD=$\frac{1}{2}×2×2$=2,S△ABC=$\frac{1}{2}×2\sqrt{2}×\sqrt{3}$=$\sqrt{6}$
∴S四面体ABCD=S△ABD+S△ACD+S△BCD+S△ABC=4+$\sqrt{6}$
(3)解:如图,以D为坐标原点建立空间直角坐标系,
则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),
∵E是AB的中点,∴F,G分别为BD,DC的中点,
得E(1,0,$\frac{1}{2}$),F(1,0,0),G(0,1,0).
∴$\overrightarrow{FE}$=(0,0,$\frac{1}{2}$),$\overrightarrow{FG}$=(-1,1,0),$\overrightarrow{BA}$=(-2,0,1).
设平面EFGH的法向量$\overrightarrow{n}$=(x,y,z),
得$\left\{\begin{array}{l}\frac{1}{2}z=0\\-x+y=0\end{array}$取$\overrightarrow{n}$=(1,1,0),
∴sin θ=|cos<$\overrightarrow{BA}$,$\overrightarrow{n}$>|=$\frac{2}{\sqrt{5}×\sqrt{2}}$=$\frac{\sqrt{10}}{5}$.

点评 本题考查线面垂直的判定与性质,考查面积的计算,考查向量方法的运用,正确求出平面的法向量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x-2|.
(Ⅰ)求不等式f(x)≤4的解集;
(Ⅱ)使f(x)≥m恒成立的实数m的最大值为t,若a、b均为正实数,且满足a+b=2t.求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=a-$\frac{2}{{2}^{x}+1}$为奇函数的必要条件是a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分别是PC、PD的中点,PA=$\sqrt{3}$AD.
(1)在线段BC上求作一点G,使得平面EFG∥平面PAB;
(2)在(1)的条件下,求平面EFG与平面PCD所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二面角α-l-β的棱上有两点A,B,P为平面β上一点,PB⊥AB,PA与AB成45°,PA与α成30°角,求这个二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了 50 人,他们年龄的频数分布及对使用微信交流赞成人数如表.
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(I)由以上统计数据填写下面 2×2 列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人年龄低于45岁的人合计
赞成
不赞成
合计
(Ⅱ)若对年龄在[55,65),[65,75)的被调查人中随机抽取两人进行追踪调查,记选中的4人中赞成使用微信交流的人数为X,求随机变量X的分布列和数学期望
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ex}{{e}^{x}}$,g(x)=ax-lnx(a∈R).
(1)当x∈[0,+∞)时,求函数f(x)的值域;
(2)若对任意x∈[0,+∞),都存在x0∈[$\frac{1}{e}$,e],使得f(x)=g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,三棱柱ABC-A1B1C1的各条棱长均相等,且侧棱垂直于底面,则BC1与平面A1B1C1所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.汉诺塔的游戏规则如下:如图有A,B,C三根套杆,在A上有n个大小不等的盘子,中间有孔可以套在杆子上面,大盘在下,小盘在下,现在要将A杆上面的所有盘子合部移动到C杆上面,每次只能移动一个盘子,且每根杆子上面的所有盘子大盘不能压在小盘上面;n个盘子全部移动完成后,所需的最少移动次数记为vn,例如v1=1,v2=3;请你耐心寻找规律,计算v5=(  )
A.31B.15C.11D.9

查看答案和解析>>

同步练习册答案