精英家教网 > 高中数学 > 题目详情
15.如图,三棱柱ABC-A1B1C1的各条棱长均相等,且侧棱垂直于底面,则BC1与平面A1B1C1所成的角为45°.

分析 由题意,∠BC1B1是BC1与平面A1B1C1所成的角,利用三棱柱ABC-A1B1C1的各条棱长均相等,且侧棱垂直于底面,可得结论.

解答 解:由题意,∠BC1B1是BC1与平面A1B1C1所成的角,
∵三棱柱ABC-A1B1C1的各条棱长均相等,且侧棱垂直于底面,
∴∠BC1B1=45°.
故答案为:45°.

点评 本题考查线面角,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}}$)的图象过(${\frac{π}{2}$,4)点,则f(x)在区间[0,$\frac{π}{2}}$]上的值域为(  )
A.[-5,5]B.[3,5]C.[3,4]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四面体ABCD及其三视图如图所示,点E、F、G、H分别是棱AB、BD、DC、CA的中点.
(1)证明:四边形EFGH是矩形;
(2)求四面体ABCD的表面积.
(3)求直线AB与平面EFGH夹角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=aexlnx在x=1处的切线与直线x+2ey=0垂直
(Ⅰ)求a的值;
(Ⅱ)证明:xf(x)>1-5ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆x2+y2+4x-2y-4=0被直线x+y-3=0所截得的弦长为(  )
A.2B.4C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);
(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[-1,1]恒成立,求3a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{2alnx}{x+1}$+b在x=1处的切线方程为x+y-3=0.
(1)求a,b.
(2)证明:当x>0,且x≠1时,f(x)>$\frac{2lnx}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的不等式|2x-m|<1的整数解有且仅有一个为2,其中m∈Z.
(1)求m的值;
(2)设ab=m,a>b>0,证明:$\frac{{{a^2}+{b^2}}}{a-b}$≥4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C的中心在原点,焦点在x轴上,若双曲线C的一条渐近线与直线$\sqrt{3}$x-y+4=0平行,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案