精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);
(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[-1,1]恒成立,求3a+b的取值范围.

分析 (Ⅰ)利用分段函数,结合[-1,1],分类讨论,即可求M(a)-m(a);
(Ⅱ)问题转化为3-b≤f(x)≤3-b对x∈[-1,1]恒成立,分类讨论,即可求3a+b的取值范围.

解答 解:(Ⅰ)f(x)=x2+3|x-a|=$\left\{\begin{array}{l}{{x}^{2}-3x+3a,x<a}\\{{x}^{2}+3x-3a,x≥a}\end{array}\right.$,
①当a≥1时,f(x)=x2-3x+3a在x∈[-1,1]单调递减,则M(a)=f(-1)=4+3a,
m(a)=f(1)=-2+3a,此时M(a)-m(a)=6;
②当a≤-1时,f(x)=x2+3x-3a在x∈[-1,1]单调递增,
则M(a)=f(1)=4-3a,m(a)=f(-1)=-2-3a,此时M(a)-m(a)=6;
③当-1<a<1时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+3a,-1≤x<a}\\{{x}^{2}+3x-3a,a≤x≤1}\end{array}\right.$,
此时f(x)在x∈[-1,a]单调递减,在x∈[a,1]单调递增,
则m(a)=f(a)=a2,M(a)=max{f(-1),f(1)}=max{4+3a,4-3a}=4+|3a|,
此时M(a)-m(a)=4+|3a|-a2
因此M(a)-m(a)=$\left\{\begin{array}{l}{6,a≤-1}\\{4+|3a|{-a}^{2},-1<a<1}\\{6,a≥1}\end{array}\right.$,
(Ⅱ)原问题等价于-3-b≤f(x)≤3-b,由(Ⅰ)知
①当a≥1时,则$\left\{\begin{array}{l}{4+3a≤-b+3}\\{-2+3a≥-b-3}\end{array}\right.$,
即$\left\{\begin{array}{l}{3a+b≤-1}\\{3a+b≥-1}\end{array}\right.$,此时3a+b=-1;
②当a≤-1时,则$\left\{\begin{array}{l}{4-3a≤-b+3}\\{-2-3a≥-b-3}\end{array}\right.$,
即$\left\{\begin{array}{l}{b-3a≤-1}\\{b-3a≥-1}\end{array}\right.$,此时b-3a=-1,此时3a+b≤-7;
③当-1<a<1时,则m(a)=f(a)=a2,$\left\{\begin{array}{l}{4+|3a|≤-b+3}\\{{a}^{2}≥-b-3}\end{array}\right.$,即-a2-3≤b≤-|3a|-1,
此时-a2+3a-3≤3a+b≤3a-|3a|-1;
由-1<a<1得-a2+3a-3>-7和3a-|3a|-1≤-1,此时-7<3a+b≤-1,
因此3a+b≤-1.

点评 本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-3|≥t对一切实数x均成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了 50 人,他们年龄的频数分布及对使用微信交流赞成人数如表.
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(I)由以上统计数据填写下面 2×2 列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人年龄低于45岁的人合计
赞成
不赞成
合计
(Ⅱ)若对年龄在[55,65),[65,75)的被调查人中随机抽取两人进行追踪调查,记选中的4人中赞成使用微信交流的人数为X,求随机变量X的分布列和数学期望
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如表是某班(共30人)在一次考试中的数学和物理成绩(单位:分)
 学号1 23 45 678 910 1112 1314 15
 数学成绩 114 106 115 77 86 90 95 86 97 79 100 78 77 113 60
 物理成绩 7249 5129 5749 62 2263 2942 2137 4621
 学号 16 1718192021222324252627282930
 数学成绩 89 74829564875665436464856656 51
 物理成绩 65 4533282928393445353534202939
将数学成绩分为两个层次:数学Ⅰ(大于等于80分)与数学Ⅱ(低于80分),物理也分为两个层次:物理Ⅰ(大于等于59分)与物理Ⅱ(低于59分).
(1)根据这次考试的成绩完成下面2×2列联表,并运用独立性检验的知识进行探究,可否有95%的把握认为“数学成绩与物理成绩有关”?
 物理Ⅰ物理Ⅱ合计 
 数学Ⅰ 4  
 数学Ⅱ  15 
 合计   30
(2)从该班这次考试成绩中任取两名同学的成绩,记ξ为数学与物理成绩都达到Ⅰ层次的人数,求ξ的分布列与数学期望.
可能用到的公式和参考数据:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
独立性检验临界值表(部分)
 P(K2≥k0 0.150 0.1000.050 0.0250.010
 k0 2.0722.706 3.8415.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,三棱柱ABC-A1B1C1的各条棱长均相等,且侧棱垂直于底面,则BC1与平面A1B1C1所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人紧急转移安置,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离路率市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率直方图:
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款救援,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况图,根据图表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
 经济损失不超过4000元经济损失超过4000元合计
捐款超过500元a=30b 
捐款不超过500元cd=6 
合计   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标的极点在平面直角坐标的原点O处,极轴与x轴的正半轴重合,且长度单位相同,若点P为曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上的动点,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m>2)
(1)将曲线C的参数方程化为普通方程,直线l的极坐标方程化为直角坐标方程;
(2)若曲线C上有且只有一点P到直线l的距离为2,求实数m的值和点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=sin2x的图象关于点($\frac{1}{2}$kπ,0),k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是著名的杨辉三角,则表中所有各数的和是(  )
A.225B.256C.127D.128

查看答案和解析>>

同步练习册答案