精英家教网 > 高中数学 > 题目详情
18.如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{4}{3}$

分析 由两点坐标求出AC所在直线斜率,化目标函数为直线方程的斜截式,由使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,得-a=-$\frac{4}{3}$,从而求得a的值.

解答 解:如图,

${k}_{AC}=\frac{\frac{22}{3}-2}{1-5}=-\frac{4}{3}$.
化目标函数z=ax+y(a>0)为y=-ax+z,
要使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则-a=-$\frac{4}{3}$,即a=$\frac{4}{3}$.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若扇形的弧长和半径都为2,则此扇形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正方体ABCD-A1B1C1D1中,求证BD1⊥AD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明:函数f(x)=$\sqrt{{x}^{2}-1}$在x∈[1,+∞)时单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由y=$\frac{1}{x}$-2,y=0,x=2所对应的曲线围成的封闭图形的面积为(  )
A.ln2-1B.1-ln2C.2ln2-3D.3-2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若0<θ<π,且满足tan$\frac{θ}{2}$+tan$\frac{3θ}{2}$+tan$\frac{θ}{2}$tan$\frac{3θ}{2}$=1,则θ=$\frac{π}{8}$或$\frac{5π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:$\frac{{m}^{\frac{1}{2}}-{n}^{\frac{1}{2}}}{{m}^{\frac{1}{2}}+{n}^{\frac{1}{2}}}$+$\frac{m\frac{1}{2}+{n}^{\frac{1}{2}}}{{m}^{\frac{1}{2}}-{n}^{\frac{1}{2}}}$(m>0,n>0,且m≠n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知8cos($\frac{π}{4}+α$)cos($\frac{π}{4}$-α)=1,则sin4α+cos2α=$\frac{49}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x),g(x)有相同的定义域D,且f(x)为增函数,g(x)为减函数,则函数f(x)+g(x),f(x)-g(x)中哪一个为增函数?

查看答案和解析>>

同步练习册答案