精英家教网 > 高中数学 > 题目详情
3.若0<θ<π,且满足tan$\frac{θ}{2}$+tan$\frac{3θ}{2}$+tan$\frac{θ}{2}$tan$\frac{3θ}{2}$=1,则θ=$\frac{π}{8}$或$\frac{5π}{8}$.

分析 利用两角和的正切函数,求出2θ的正切函数值,然后求解角的大小.

解答 解:θ满足tan$\frac{θ}{2}$+tan$\frac{3θ}{2}$+tan$\frac{θ}{2}$tan$\frac{3θ}{2}$=1,
可得tan$\frac{θ}{2}$+tan$\frac{3θ}{2}$=1-tan$\frac{θ}{2}$tan$\frac{3θ}{2}$,
可得tan2θ=tan($\frac{θ}{2}+\frac{3θ}{2}$)=1,
∵0<θ<π,2θ∈(0,2π),
∴2θ=$\frac{π}{4}$或$\frac{5π}{4}$,
解得θ=$\frac{π}{8}$或$\frac{5π}{8}$.
故答案为:$\frac{π}{8}$或$\frac{5π}{8}$.

点评 本题考查两角和的正切函数的应用,注意角所在范围,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知α是第一象限的角,且cosα=$\frac{3}{5}$.求:
(1)sin2α-sinα•cosα+2tanα;
(2)$\frac{sin(α+\frac{π}{4})}{cos(2α+4π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)是定义域为[-1,0)∪(0,1]的奇函数,且当0<x≤1时,f(x)=1-x,则不等式f(x)<f(-x)+1的解集为($\frac{1}{2}$,1]∪[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+ax.
(1)判断f(x)的奇偶性并说明理由;
(2)当a=0时,判断F(x)=f(x)+$\frac{2}{x}$在x∈(0,1]的单调性并用定义证明:探索函数F(x)=x2+$\frac{2}{x}$在(0,+∞)上是否有最小值,若有,请直接写出F(x)在(0,+∞)上的最小值,不需证明.
(3)当a=2时,若函数G(x)=$\left\{\begin{array}{l}{f(x),x≤0}\\{\frac{2}{x},x>0}\end{array}\right.$的函数值为k(k≠0)时有两个不同的对应自变量x1,x2,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-2x+p=0},B={x|x<0},若A∩B=∅,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a2+a-2=3,则a+a-1=$±\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=|2x-3|-|x|的单调递减区间是(-∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=2,$\overrightarrow{AB}•\overrightarrow{BC}$=$\overrightarrow{BC}•\overrightarrow{CA}$,则$\overrightarrow{CA}•\overrightarrow{AB}$的值为(  )
A.7B.-7C.11D.-11

查看答案和解析>>

同步练习册答案