分析 (1)由于$cosα=\frac{3}{5}$,且α是第一象限的角,可得$sinα=\sqrt{1-{{cos}^2}α}=\frac{4}{5}$,$tanα=\frac{sinα}{cosα}=\frac{4}{3}$.代入化简即可得出.
(2)展开代入即可得出.
解答 解:(1)由于$cosα=\frac{3}{5}$,且α是第一象限的角,
∴$sinα=\sqrt{1-{{cos}^2}α}=\frac{4}{5}$,$tanα=\frac{sinα}{cosα}=\frac{4}{3}$.
∴${sin^2}α-sinα•cosα+2tanα={(\frac{4}{5})^2}-\frac{4}{5}•\frac{3}{5}+2×\frac{4}{3}=\frac{212}{75}$.
(2)$\frac{sin(α+\frac{π}{4})}{cos(2α+4π)}$
=$\frac{{\frac{{\sqrt{2}}}{2}(cosα+sinα)}}{{{{cos}^2}α-{{sin}^2}α}}=\frac{{\sqrt{2}}}{2}•\frac{1}{cosα-sinα}$
=$\frac{\sqrt{2}}{2}×\frac{1}{\frac{3}{5}-\frac{4}{5}}$=-$\frac{5\sqrt{2}}{2}$.
点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1} | B. | {-1,1} | C. | {0,1} | D. | {-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{5}{6}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e | B. | $\frac{1}{e}$ | C. | 2e | D. | $\frac{1}{2e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com