精英家教网 > 高中数学 > 题目详情
5.做直线运动的质点在任意位置x处,所受的力F(x)=1-e-x,则质点从x1=0,沿x轴运动到x2=1处,力F(x)所做的功是(  )
A.eB.$\frac{1}{e}$C.2eD.$\frac{1}{2e}$

分析 根据积分的物理意义,即可得到结论.

解答 解:根据积分的物理意义可知力F(x)所做的功为${∫}_{0}^{1}$(1-e-x)dx=(x+e-x)|${\;}_{0}^{1}$=1+$\frac{1}{e}$-1=$\frac{1}{e}$,
故选:B.

点评 本题主要考查积分的计算,利用积分物理意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和值域;
(2)将函数y=f(x)的图象按向量$\overrightarrow{a}$=(-$\frac{π}{12}$,$\frac{1}{2}$)平移后得到函数y=g(x)的图象,求函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若变量x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤2}\end{array}\right.$的z=2x+y的取值范围是(  )
A.[3,4]B.[2,4]C.[2,3]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α是第一象限的角,且cosα=$\frac{3}{5}$.求:
(1)sin2α-sinα•cosα+2tanα;
(2)$\frac{sin(α+\frac{π}{4})}{cos(2α+4π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(π-x)sin($\frac{π}{2}$-x)+cos2x
(1)求函数f(x)的最小正周期;
(2)当x∈[-$\frac{π}{8}$,$\frac{3π}{8}$]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,设平面α与β相交于直线l,AC⊥α,BD⊥β,垂足分别为C、D,直线AB⊥AC,AB⊥BD.
求证:AB∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.边长与对角线长均相等的空间四边形ABCD中,AB与CD的中点分别是P、Q,作与直线PQ垂直的任一平面α,则空间四边形ABCD在平面α内的射影是(  )
A.梯形B.矩形但非正方形C.菱形但非正方形D.正方形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)是定义域为[-1,0)∪(0,1]的奇函数,且当0<x≤1时,f(x)=1-x,则不等式f(x)<f(-x)+1的解集为($\frac{1}{2}$,1]∪[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a2+a-2=3,则a+a-1=$±\sqrt{5}$.

查看答案和解析>>

同步练习册答案