19£®ÒÑÖªÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ÓëÅ×ÎïÏßC2¹ØÓÚyÖá¶Ô³Æ£¬F1¡¢F2·Ö±ðΪC1¡¢C2µÄ½¹µã£¬PÊÇC1ÉÏÒ»µã£¬µ±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬|PF2|=$\frac{\sqrt{7}}{2}$£®
£¨1£©ÇóÅ×ÎïÏßC1ºÍC2µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=x-1£¬ÊÇ·ñ´æÔÚµãM£¨x0£¬y0£©£¨|y0|¡Ü1£©£¬Ê¹µÃµãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡äÔÚC2ÉÏ£¿Èô´æÔÚ£¬Çó³öMµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèµãQÔÚC2ÉÏ£¬P¡¢QÔÚxÖáͬ²àÇÒPF1¡ÎQF2£¬QF1ÓëPF2½»ÓÚµãM£¬¹ýM×÷PF1µÄƽÐÐÏß½»xÖáÓÚµãK£¬Ö¤Ã÷£º|MK|ÊǶ¨Öµ£®

·ÖÎö £¨1£©ÓÉÒÑÖªÖе±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬|PF2|=$\frac{\sqrt{7}}{2}$£¬ÀûÓÃÁ½µãÖ®¼ä¾àÀ빫ʽ£¬Çó³öpÖµ£¬¿ÉµÃC1ºÍC2µÄ·½³Ì£»
£¨2£©¸ù¾Ý¶Ô³ÆµãÁ¬ÏߵĴ¹Ö±Æ½·½ÏßÊǶԳÆÖᣬ½áºÏµãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡äÔÚC2ÉÏ£¬¿ÉµÃMµãµÄ×ø±ê£»
£¨3£©ÓÉÒÑÖªÇó³öP£¬QµÄ×ø±ê£¬½ø¶øÇó³öM£¬KµÄ×ø±ê£¬´úÈëÁ½µãÖ®¼ä¾àÀ빫ʽ£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ÓëÅ×ÎïÏßC2¹ØÓÚyÖá¶Ô³Æ£¬F1¡¢F2·Ö±ðΪC1¡¢C2µÄ½¹µã£¬
¡àF1¡¢F2µÄ×ø±ê·Ö±ðΪ£¨$\frac{p}{2}$£¬0£©£¬£¨-$\frac{p}{2}$£¬0£©£¬
Ôòµ±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬
Ö±ÏßPF1µÄ·½³ÌΪ£ºy=$\sqrt{3}$£¨x-$\frac{p}{2}$£©£¬
´úÈëy2=2px²¢ÕûÀíµÃ£º${y}^{2}-\frac{2\sqrt{3}p}{3}{y-p}^{2}=0$£¬
½âµÃ£ºy=$\sqrt{3}$p£¬Ôòx=$\frac{3}{2}p$£¬
ÓÖÓÉ|PF2|=$\sqrt{£¨\frac{3}{2}p+\frac{1}{2}p£©^{2}+£¨\sqrt{3}p£©^{2}}$=$\sqrt{7}$p=$\frac{\sqrt{7}}{2}$£®
½âµÃ£ºp=$\frac{1}{2}$£¬
ÔòÅ×ÎïÏßC1ºÍC2µÄ·½³Ì·Ö±ðΪ£ºy2=xºÍy2=-x£¬
£¨2£©Éè´æÔÚM£¨x0£¬y0£©£¨|y0|¡Ü1£©£¬Ê¹µÃµãP¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡ä£¨x1£¬y1£©ÔÚC2ÉÏ£¬
Ôò$\left\{\begin{array}{l}\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}=-1\\ \frac{{y}_{1}+{y}_{0}}{2}=\frac{{x}_{1}+{x}_{0}}{2}-1\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{x}_{1}={y}_{0}+1\\{y}_{1}={x}_{0}-1\end{array}\right.$£¬
´úÈëy2=-xµÃ£º$£¨{x}_{0}-1£©^{2}=-£¨{y}_{0}+1£©$£¬
¼´${{y}_{0}=-£¨{x}_{0}-1£©}^{2}-1$¡Ü-1£¬
ÓÖÓÉ|y0|¡Ü1µÃ£º-1¡Üy0¡Ü1£¬
Ôòy0=-1£¬
Ôòx1=0£¬y1=0£¬x0=1£¬
¼´Mµã×ø±êΪ£¨1£¬-1£©£¬
Ö¤Ã÷£º£¨3£©ÓÉ£¨1£©µÃPµã×ø±êΪ£¨$\frac{3}{4}$£¬$\frac{\sqrt{3}}{2}$£©£¬F1¡¢F2µÄ×ø±ê·Ö±ðΪ£¨$\frac{1}{4}$£¬0£©£¬£¨-$\frac{1}{4}$£¬0£©£¬
¡ßPF1¡ÎQF2£¬
¡àÖ±ÏßQF2µÄ·½³ÌΪ£ºy=$\sqrt{3}$£¨x+$\frac{1}{4}$£©£¬
´úÈëy2=-xµÃ£º$3{x}^{2}+\frac{5}{2}x+\frac{3}{16}=0$£¬
¡ßP¡¢QÔÚxÖáͬ²à£¬¹ÊQµã×ø±êΪ£¨$-\frac{1}{12}$£¬$\frac{\sqrt{3}}{6}$£©£¬
ÔòÖ±ÏßQF1µÄ·½³ÌΪ£ºy=$-\frac{\sqrt{3}}{2}$£¨x-$\frac{1}{4}$£©£¬
PF2µÄ·½³ÌΪ£ºy=$\frac{\sqrt{3}}{2}$£¨x+$\frac{1}{4}$£©£¬
ÁªÁ¢Á½¸öÖ±Ïߵķ½³Ì£¬¿ÉµÃ½»µãMµÄ×ø±êΪ£¨0£¬$\frac{\sqrt{3}}{8}$£©£¬
¹ýM×÷PF1µÄƽÐÐÏß·½³ÌΪ£ºy=$\sqrt{3}$x+$\frac{\sqrt{3}}{8}$£¬
ÔòµãKµÄ×ø±êΪ£º£¨-$\frac{1}{8}$£¬0£©£¬
Ôò|MK|=$\frac{1}{4}$£¬
¼´|MK|ÊǶ¨Öµ

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÅ×ÎïÏߵķ½³Ì£¬Å×ÎïÏßµÄÐÔÖÊ£¬Á½µãÖ®¼ä¾àÀë·½³Ì£¬µã¹ØÓÚÖ±ÏߵĶԳƵ㣬ֱÏߵĽ»µã£¬Á½µãÖ®¼ä¾àÀ빫ʽ£¬ÊǽâÎö¼¸ºÎ֪ʶµÄ×ÛºÏÓ¦Óã¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèUÊÇÈ«¼¯£¬A£¬B£¬CÊÇUµÄ·Ç¿Õ×Ó¼¯£¬ÇÒÂú×ãA⊆B⊆C£¬Ð´³ö¼¯ºÏ∁UA£¬∁UB£¬∁UCÖ®¼äµÄ¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÅ×ÎïÏßC£ºx2=4y£®
£¨1£©ÈôµãP£¨x0£¬y0£©ÊÇÅ×ÎïÏßCÉÏÒ»µã£¬ÇóÖ¤£º¹ýµãPµÄÅ×ÎïÏßCµÄÇÐÏß·½³ÌΪx0x=2£¨y+y0£©
£¨2£©µãMÊÇÅ×ÎïÏßC×¼ÏßÉÏÒ»µã£¬¹ýµãM×÷Å×ÎïÏßµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬Çó|AB|µÄ×îСֵµÄµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=-x+log2$\frac{1-x}{1+x}$£¬Çóf£¨$\frac{1}{2014}$£©+f£¨-$\frac{1}{2014}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=2£¬an+1=an+3n+2£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Éèa£¬bÊÇÁ½¸ö²»ÏàµÈµÄÕýÊý£¬A=$\frac{a+b}{2}$£¬G=$\sqrt{ab}$£¬H=$\frac{2}{\frac{1}{a}+\frac{1}{b}}$£¬Q=$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$£¬ÊԱȽÏA£¬G£¬H£¬QµÄ´óС²¢¸ø³öÖ¤Ã÷¹ý³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=2cos£¨¦Øx+$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©Âú×㣺f£¨$\frac{8}{3}$¦Ð£©=f£¨$\frac{14}{3}$¦Ð£©£¬ÇÒÔÚÇø¼ä£¨$\frac{8}{3}$¦Ð£¬$\frac{14}{3}$¦Ð£©ÄÚÓÐ×î´óÖµµ«Ã»ÓÐ×îСֵ£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺
P1£ºf£¨x£©ÔÚ[0£¬2¦Ð]Éϵ¥µ÷µÝ¼õ£»
P2£ºf£¨x£©µÄ×îСÕýÖÜÆÚÊÇ4¦Ð£»
P3£ºf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{2}$¶Ô³Æ£»
P4£ºf£¨x£©µÄͼÏó¹ØÓڵ㣨-$\frac{4}{3}$¦Ð£¬0£©¶Ô³Æ£®ÆäÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
A£®P1£¬P2B£®P2£¬P4C£®P1£¬P3D£®P3£¬P4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Òòʽ·Ö½â£º
£¨1£©5x2-4x-1£»
£¨2£©6x2-11xy+2y2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªµãA£¨2£¬3£©ºÍµãB£¨8£¬-3£©£¬ÇóÏß¶ÎABÖеãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸