精英家教网 > 高中数学 > 题目详情
(13分)已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且
(1)求动点的轨迹的方程;
(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.
(1)
(2)当时,的最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.
⑴已知函数.求证:为曲线的“上夹线”.
⑵观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知,直线为平面上的动点,过点的垂线,垂足为点,且
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点的直线交轨迹点,交直线于点
(1)已知,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分) 设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
(Ⅰ) 已知动点到点与到直线的距离相等,求点的轨迹的方程;
(Ⅱ) 若正方形的三个顶点()在(Ⅰ)中的曲线上,设的斜率为,求关于的函数解析式
(Ⅲ) 求(2)中正方形面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分分)
在平面直角坐标系xoy中,已知四边形OABC是平行四边形,,点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(II)是否存在实数λ,使?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知定点A(0,1),B(0,-1),C(1,0).动点P满足:.
(I)求动点P的轨迹方程,并说明方程表示的曲线类型;
(II)当时,求的最大、最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1d2
APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于MN
点,试确定λ的范围,使·=0,其中点
O为坐标原点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆和双曲线的公共焦点为是两曲线的一个公共点,则cos的值等于(    )

查看答案和解析>>

同步练习册答案