精英家教网 > 高中数学 > 题目详情

已知函数,求:
(1)求函数的最小正周期;
(2)求函数的最大值、最小值及取得最大值、最小值的
(3)求函数的单调递增区间

(1)(2)
(3)增区间

解析试题分析:(1)
(2)的最大值为2,此时的最小值为-2,此时
(3)令增区间为
考点:三角函数周期性单调性
点评:结合三角函数图象分析考虑

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
(1)求的值; (2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(Ⅰ)若,求的最大值;
(Ⅱ)在中,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数(其中为正常数,)的最小正周期为
(1)求的值;
(2)在△中,若,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与轴正半轴的交点, 为正三角形。记 (1)若A点的坐标为 ,求 的值   (2)求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分) 对于函数f(x)=(asin x+cos x)cos x-,已知f()=1.

(1)求a的值; 
(2)作出函数f(x)在x∈[0,π]上的图像(不要求书写作图过程).
(3)根据画出的图象写出函数上的单调区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)设的内角,且为钝角,求的最小值;
(2)设是锐角的内角,且的三个内角的大小和AC边的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
函数f(x)= sinωxcosωx+sin2ωx+ ,其图像相邻两条对称轴之间的距离为
(Ⅰ)求ω的值;
(Ⅱ) 若A为△ABC的内角,且f =,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
右图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象.
(1)求函数f(x)的解析式;
(2)若f,0<α<,求cosα的值.

查看答案和解析>>

同步练习册答案