| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 因为(2a+b+c)2=4a2+b2+c2+4ab+2bc+4ca,与已知等式比较发现,只要利用均值不等式b2+c2≥2bc即可求出结果.
解答 解:因为a(a+b+c)+bc=16,
所以16×4=(a2+ab+ac+bc)×4=4a2+4ab+4ac+4bc≤4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2,
所以2a+b+c≥8,
所以2a+b+c的最小值为8.
故选:D.
点评 本小题主要考查均值不等式的有关知识及配方法的有关知识,以及转化与化归的思想方法.解答的关键是利用平方关系4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2建立条件与结论之间的联系.
科目:高中数学 来源: 题型:选择题
| A. | {x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z} | B. | {x|x≠kπ+$\frac{3π}{4}$,k∈Z} | C. | {x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z} | D. | {x|x≠kπ+$\frac{π}{4}$,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com