分析 将恒成立问题转化为函数的最大值并化简,利用换元法、配方法和二次函数的性质求出数a的取值范围.
解答 解:∵对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,
∴a≥$\frac{{x}^{2}}{7{x}^{2}-4x+1}$=$\frac{1}{7-\frac{4}{x}+\frac{1}{{x}^{2}}}$的最大值即可,
设t=$\frac{1}{x}$(t>0),则$\frac{1}{7-\frac{4}{x}+\frac{1}{{x}^{2}}}$=$\frac{1}{{t}^{2}-4t+7}$=$\frac{1}{{(t-2)}^{2}+3}$,
∵当t=2时,(t-2)2+3取最小值3,∴$\frac{1}{{(t-2)}^{2}+3}$取到最大值是$\frac{1}{3}$,
∴实数a的取值范围是$[\frac{1}{3},∞)$,
故答案为:$[\frac{1}{3},∞)$.
点评 本题考查恒成立问题转化为求函数的最值问题,以及换元法、配方法和二次函数的性质的应用,考查化简、变形能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | $-\frac{6}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{2}$ | B. | 5 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,e) | B. | (-∞,-1]∪[e,+∞) | C. | (-∞,-1]∪[e,+∞) | D. | [e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com