精英家教网 > 高中数学 > 题目详情
6.若对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,则实数a的取值范围是$[\frac{1}{3},∞)$.

分析 将恒成立问题转化为函数的最大值并化简,利用换元法、配方法和二次函数的性质求出数a的取值范围.

解答 解:∵对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,
∴a≥$\frac{{x}^{2}}{7{x}^{2}-4x+1}$=$\frac{1}{7-\frac{4}{x}+\frac{1}{{x}^{2}}}$的最大值即可,
设t=$\frac{1}{x}$(t>0),则$\frac{1}{7-\frac{4}{x}+\frac{1}{{x}^{2}}}$=$\frac{1}{{t}^{2}-4t+7}$=$\frac{1}{{(t-2)}^{2}+3}$,
∵当t=2时,(t-2)2+3取最小值3,∴$\frac{1}{{(t-2)}^{2}+3}$取到最大值是$\frac{1}{3}$,
∴实数a的取值范围是$[\frac{1}{3},∞)$,
故答案为:$[\frac{1}{3},∞)$.

点评 本题考查恒成立问题转化为求函数的最值问题,以及换元法、配方法和二次函数的性质的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知:β∈(0,$\frac{π}{4}$),α∈($\frac{π}{4}$,$\frac{3π}{4}$)且cos($\frac{π}{4}$-α)=$\frac{4}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求:cosα,cos(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(2,0),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是(  )
A.-3B.3C.$-\frac{6}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知A=60°,AB=2,角A的平分线AD=$\frac{4\sqrt{3}}{3}$,求边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,且$\overrightarrow{a}$=(2,1),则|$\overrightarrow{b}$|=(  )
A.3$\sqrt{2}$B.5C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2lnx,x>1}\end{array}\right.$,则函数|f(x)|≥2的解集为(  )
A.[-1,e)B.(-∞,-1]∪[e,+∞)C.(-∞,-1]∪[e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知各项都不相等的等差数列{an},其前n项和为Sn满足S6=60,${a}_{6}^{2}$=a1•a21,则数列{$\frac{{S}_{n}}{{2}^{n-1}}$}最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b,c>0,且a(a+b+c)+bc=16,则2a+b+c的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列四个命题:
①函数y=2sin(2x-$\frac{π}{3}$)的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④存在实数α,使$\sqrt{2}$sin(α+$\frac{π}{4}}$)=$\frac{3}{2}$
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

同步练习册答案