精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,且$\overrightarrow{a}$=(2,1),则|$\overrightarrow{b}$|=(  )
A.3$\sqrt{2}$B.5C.2D.$\sqrt{2}$

分析 对|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$两边平方即可得出${\overrightarrow{b}}^{2}$,进而得出|$\overrightarrow{b}$|.

解答 解:∵|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,∴${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=50,
∵${\overrightarrow{a}}^{2}$=5,∴5+20+${\overrightarrow{b}}^{2}$=50,解得${\overrightarrow{b}}^{2}$=25,
∴|$\overrightarrow{b}$|=5.
故选:B.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在四个函数y=sin|x|,y=cos|x|,y=$\frac{1}{|tanx|}$,y=lg|sinx|中,以π为周期,在$(0,\frac{π}{2})$上单调递增的偶函数是(  )
A.y=sin|x|B.y=cos|x|C.y=$\frac{1}{|tanx|}$D.y=lg|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,若a1>0,3a4=8a6,则当Sn取最大值时n=(  )
A.4B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机变量ξ的分布列为P(ξ=k)=$\frac{k}{n}$(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=$\frac{5}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面上画了一些彼此相距10的平行线,把一枚半径为3的硬币任意掷在平面上,则硬币不与任一条平行线相碰的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,则实数a的取值范围是$[\frac{1}{3},∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的圆的方程.
(1)经过点P(5,1),圆心为点C(8,-3);
(2)经过点P(4,2),Q(-6,-2)且圆心在y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的方程为x-$\sqrt{2}$y=0,P是C上一点,且|OP|的最小值等于2,则该双曲线的标准方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{7}$sinx+3cosx,x∈R的最大值为m,最小值为n,则|m|+|n|=(  )
A.16B.3+$\sqrt{7}$C.8D.6+2$\sqrt{7}$

查看答案和解析>>

同步练习册答案