精英家教网 > 高中数学 > 题目详情
16.平面上画了一些彼此相距10的平行线,把一枚半径为3的硬币任意掷在平面上,则硬币不与任一条平行线相碰的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{1}{4}$

分析 作出两条平行线的垂线段AB,则AB=3,要使硬币与两直线不相碰,则硬币对应的圆心必须处在线段CD内,根据几何概型的概率公式求概率即可.

解答 解:∵相邻平行线间的距离为10cm,硬币的半径为3cm,
∴作出两条平行线的垂线段AB,则AB=10
要使硬币与两直线不相碰,
则硬币对应的圆心必须处在线段CD内,
∴CD=10-2×3=4,
∴根据几何概型的概率公式可知,硬币不与任何一条平行线相碰的概率是$\frac{CD}{AB}=\frac{4}{10}=\frac{2}{5}$;
故选B.

点评 本题主要考查几何概型的概率求法,利用条件将所求概率转化为线段CD和AB之比是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,已知b=5,B=$\frac{π}{4}$,tanA=2,则sinA=$\frac{2\sqrt{5}}{5}$,边a=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.向量$\overrightarrow{a}$与$\overrightarrow{b}$=(1,-2)满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2$\sqrt{5}$,则向量$\overrightarrow{a}$=(4,2)或(-4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,AB=8cm,BC=7cm,AC=5cm,内心为I,则AI的长度为$2\sqrt{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,角A、B、C所对的边分别为a、b、c
(Ⅰ)证明:若A、B、C成等差数列,则B=$\frac{π}{3}$;
(Ⅱ)证明:若a、b、c的倒数成等差数列,则B<$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,且$\overrightarrow{a}$=(2,1),则|$\overrightarrow{b}$|=(  )
A.3$\sqrt{2}$B.5C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\frac{1}{2}$sin(x-$\frac{π}{3}$)的图象可由函数y=sinx的图象经过变换向右平移$\frac{π}{3}$个单位再将纵坐标变为原来的$\frac{1}{2}$得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x,y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-5≤0}\\{2x-y-1≤0}\end{array}\right.$,则z=mx+y(0<m<1)的最大值是(  )
A.-1B.5C.7D.2m+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{3}$sinx-cosx的振幅和频率分别为(  )
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

查看答案和解析>>

同步练习册答案