精英家教网 > 高中数学 > 题目详情
17.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(2,0),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是(  )
A.-3B.3C.$-\frac{6}{5}$D.$\frac{6}{5}$

分析 根据向量投影的定义进行求解.

解答 解:向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$
=$\frac{-3×2+0}{2}$=-3,
故选:A.

点评 本题考查向量的投影,解题的关键是看出两个向量之间是哪一个在哪一个向量上的投影,看清两者之间的关系,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图$∠ABC=\frac{π}{4},O$为AB上一点,且3OB=3OC=2AB,又PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.
(1)求证:平面PBD⊥平面COD;
(2)求PD与平面BDC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(α)=$\frac{{sin(α-3π)•cos(2π-α)•sin(-α+\frac{3}{2}π)}}{cos(-π-α)•sin(-π-α)}$,
(1)化简f(α);
(2)若α为第四象限角且sin(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=tan($\frac{π}{4}$-2x)的定义域是(  )
A.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z}B.{x|x≠kπ+$\frac{3π}{4}$,k∈Z}C.{x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z}D.{x|x≠kπ+$\frac{π}{4}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,若a1>0,3a4=8a6,则当Sn取最大值时n=(  )
A.4B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于问题:已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0,给出如下解法:
解:由关于x的不等式ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为($\frac{1}{2}$,3),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为$({\frac{1}{3},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机变量ξ的分布列为P(ξ=k)=$\frac{k}{n}$(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=$\frac{5}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,则实数a的取值范围是$[\frac{1}{3},∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A(3,4,1),B(1,0,5),C(0,1,0),则AB中点M到点C距离为$\sqrt{14}$.

查看答案和解析>>

同步练习册答案