精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2lnx,x>1}\end{array}\right.$,则函数|f(x)|≥2的解集为(  )
A.[-1,e)B.(-∞,-1]∪[e,+∞)C.(-∞,-1]∪[e,+∞)D.[e,+∞)

分析 根据解析式对x进行分类讨论,分别利用绝对值不等式化简|f(x)|≥2,由一元二次不等式的解法、对数函数的性质求出不等式的解集.

解答 解:当x≤1时,|f(x)|≥2为|-x2+x|≥2,
∴-x2+x≥2或-x2+x≤-2,即x2-x+2≤0或x2-x-2≥0,
解得x≥2或x≤-1,即x≤-1;
当x>1时,|f(x)|≥2为|2lnx|≥2,
即lnx≥1或lnx≤-1,解得x≥e或0<x≤$\frac{1}{e}$,即x≥e,
综上可得,不等式的解集是(-∞,-1]∪[e,+∞),
故选:C.

点评 本题考查绝对值不等式、一元二次不等式的解法,以及对数函数的性质的应用,考查分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设直线l:y=kx+m(k,m∈Z)与椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1交于不同两点B、D,与双曲线$\frac{x^2}{4}$-$\frac{y^2}{12}$=1交于不同两点E、F,则满足|BE|=|DF|的直线l共有(  )
A.5条;B.4条C.3条D.2条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于问题:已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0,给出如下解法:
解:由关于x的不等式ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为($\frac{1}{2}$,3),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为$({\frac{1}{3},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.arctan$\sqrt{3}$-arcsin(-$\frac{1}{2}$)+arccos0的值为(  )
A.$\frac{5π}{6}$B.πC.0D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若对于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,则实数a的取值范围是$[\frac{1}{3},∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.作出函数y=sin(x-$\frac{π}{6}$)+1在[$\frac{π}{6}$,$\frac{13}{6}$π]的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题“若直线l与平面α垂直,则直线l与平面α内的任意一条直线垂直”,则其逆命题、否命题、逆否命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂生产某种黑色水笔,每百支水笔的成本为30元,并且每百支水笔的加工费为m元(其中m为常数,且3≤m≤6).设该工厂黑色水笔的出厂价为x元/百支(35≤x≤40),根据市场调查,日销售量与ex成反比例,当每百支水笔的出厂价为40元时,日销售量为10万支.
(1)当每百支水笔的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
(2)已知工厂日利润达到1000元才能保证工厂的盈利.若该工厂在出厂价规定的范围内,总能盈利,则每百支水笔的加工费m最多为多少元?(精确到0.1元)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x>y>0,则x+$\frac{1}{{({x-y})y}}$的最小值是(  )
A.2B.3C.4D.9

查看答案和解析>>

同步练习册答案