精英家教网 > 高中数学 > 题目详情
2.三角形三个端点的坐标分别为A(-1,2)、B(2,4)、C(3,5),求这个三角形的面积.

分析 由距离公式可得三边长,可得其中一个夹角的正弦值,由三角形的面积公式可得.

解答 解:由题意可得|AB|=$\sqrt{(-1-2)^{2}+(2-4)^{2}}$=$\sqrt{13}$,
|AC|=$\sqrt{(-1-3)^{2}+(2-5)^{2}}$=5,|BC|=$\sqrt{(2-3)^{2}+(4-5)^{2}}$=$\sqrt{2}$,
∴由余弦定理可得cosA=$\frac{25+13-2}{2×5×\sqrt{13}}$=$\frac{18\sqrt{13}}{65}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{13}}{65}$,
∴三角形的面积S=$\frac{1}{2}$×$\sqrt{13}$×5×$\frac{\sqrt{13}}{65}$=$\frac{1}{2}$.

点评 本题考查两点间的距离公式,涉及同角三角函数基本关系和余弦定理,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若关于x的不等式x2-2ax-a2≤0的解集为A,且[0,1]⊆A,则a的取值范围是{a|$a≥\sqrt{2}-1或a≤-\sqrt{2}-1$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x),对于任意的x$∈[0,\frac{π}{2})$满足f′(x)cosx+f(x)sinx>0,则下列不等式中成立的有②③④.
①$\sqrt{2}f(\frac{π}{3})$<f($\frac{π}{4}$) ②$\sqrt{2}$f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{4}$) ③f(0)$<\sqrt{2}$f($\frac{π}{4}$) ④f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
(1)求f(0)的值;
(2)求证:f(x)>0对一切实数x∈R都成立;
(3)当f(4)=$\frac{1}{16}$时,解不等式f(x-3)•f(5-x2)≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过椭圆4x2+2y2=1的一个焦点F1的弦AB与另一个焦点F2所围成的△ABF2的周长是$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=mx2+nx-2(n>0,m>0)的图象与x轴交与(2,0),则$\frac{1}{m}+\frac{2}{n}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α是三角形的内角,且sinαcosα=$\frac{1}{8}$,则cosα+sinα的值等于(  )
A.±$\frac{5}{4}$B.±$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.-$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的方程|lnx|-$\frac{a}{x}$=0恰有3个根,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则f(x)<0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案