16£®º¯Êýf£¨x£©Í¼ÏóÉϲ»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©´¦µÄÇÐÏßµÄбÂÊ·Ö±ðÊÇkA£¬kB£¬|AB|ΪA¡¢BÁ½µã¼ä¾àÀ룬¶¨Òå¦Õ£¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$ΪÇúÏßf£¨x£©ÔÚµãAÓëµãBÖ®¼äµÄ¡°ÇúÂÊ¡±£¬¸ø³öÒÔÏÂÎÊÌ⣺
¢Ù´æÔÚÕâÑùµÄº¯Êý£¬¸Ãº¯ÊýͼÏóÉÏÈÎÒâÁ½µãÖ®¼äµÄ¡°ÇúÂÊ¡±Îª³£Êý£»
¢Úº¯Êýf£¨x£©=x3-x2+1ͼÏóÉÏÁ½µãAÓëBµÄºá×ø±ê·Ö±ðΪ1£¬2£¬ÔòµãAÓëµãBÖ®¼äµÄ¡°ÇúÂÊ¡±¦Õ£¨A£¬B£©£¾$\sqrt{3}$£»
¢Ûº¯Êýf£¨x£©=ax2+b£¨a£¾0£¬b¡ÊR£©Í¼ÏóÉÏÈÎÒâÁ½µãA¡¢BÖ®¼äµÄ¡°ÇúÂÊ¡±¦Õ£¨A£¬B£©¡Ü2a£»
¢ÜÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÇúÏßf£¨x£©=exÉϲ»Í¬Á½µã£¬ÇÒx1-x2=1£¬Èôt•¦Õ£¨A£¬B£©£¼1ºã³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬1£©£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ù¢Û£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®

·ÖÎö ¿¼ÂÇÒ»´Îº¯Êý£¬Çó³öµ¼Êý£¬¿ÉµÃ¦Õ£¨A£¬B£©=0£¬¼´¿ÉÅжϢ٣»Çó³öA£¬BµÄ×ø±ê£¬ÇóµÃ¦Õ£¨A£¬B£©£¬¼´¿ÉÅжϢڣ»Çó³öf£¨x£©µÄµ¼Êý£¬ÔËÓò»µÈʽµÄÐÔÖÊ£¬¿ÉµÃ¦Õ£¨A£¬B£©¡Ü2a£¬¼´¿ÉÅжϢۣ»Çó³öº¯ÊýµÄµ¼Êý£¬ÔËÓÃж¨ÒåÇóµÃ¦Õ£¨A£¬B£©£¬Óɺã³ÉÁ¢Ë¼Ï룬¼´¿ÉµÃµ½tµÄ·¶Î§£¬¼´¿ÉÅжϢܣ®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬µ±º¯Êýf£¨x£©=kx+b£¨k¡Ù0£©Ê±£¬f¡ä£¨x£©=k£¬
¦Õ£¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|k-k|}{|AB|}$=0£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÓÉÌâÒâ¿ÉµÃA£¨1£¬1£©£¬B£¨2£¬5£©£¬f£¨x£©µÄµ¼ÊýΪf¡ä£¨x£©=3x2-2x£¬
¿ÉµÃ¦Õ£¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|1-8|}{\sqrt{1+16}}$=$\frac{7}{\sqrt{17}}$£¼$\sqrt{3}$£¬¹Ê¢Ú²»ÕýÈ·£»
¶ÔÓÚ¢Û£¬º¯Êýf£¨x£©=ax2+bµÄµ¼ÊýΪf¡ä£¨x£©=2ax£¬
¼´ÓЦգ¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|2a{x}_{1}-2a{x}_{2}|}{\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨a{{x}_{1}}^{2}-a{{x}_{2}}^{2}£©^{2}}}$=$\frac{2a}{\sqrt{1+{a}^{2}£¨{x}_{1}+{x}_{2}£©^{2}}}$¡Ü2a£¬
¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬ÓÉy=exµÃy¡ä£¨x£©=ex£¬
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÎªÇúÏßy=exÉÏÁ½µã£¬ÇÒx1-x2=1£¬
¿ÉµÃ¦Õ£¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{e}^{{x}_{1}}-{e}^{{x}_{2}}£©^{2}}}$£¬
ÓÉt•¦Õ£¨A£¬B£©£¼1ºã³ÉÁ¢£¬¿ÉµÃt£¼$\sqrt{\frac{1}{£¨{e}^{{x}_{1}}-{e}^{{x}_{2}}£©^{2}}+1}$£¬
ÓÉ$\sqrt{\frac{1}{£¨{e}^{{x}_{1}}-{e}^{{x}_{2}}£©^{2}}+1}$£¾1£¬¿ÉµÃt¡Ü1£¬¹Ê¢Ü²»ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓã¬Ö÷Òª¿¼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏßµÄбÂÊ£¬²»µÈʽºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªµãA£¨-8£¬-6£©£¬B£¨-3£¬-1£©£¬C£¨5£¬a£©Èýµã¹²Ïߣ¬Ôòa=7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµ×ÃæÎªÕýÈý½ÇÐεÄÖ±ÈýÀâÖùÄÚ½ÓÓڰ뾶Ϊ1µÄÇò£¬µ±ÈýÀâÖùµÄÌå»ý×î´óʱ£¬ÈýÀâÖùµÄ¸ßΪ$\frac{{2\sqrt{3}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\frac{a{x}^{2}}{{e}^{x}}$£¬Ö±Ïßy=$\frac{1}{e}$xΪÇúÏßy=f£¨x£©µÄÇÐÏߣ¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©ÓÃmin{m£¬n}±íʾm£¬nÖеÄ×îСֵ£¬É躯Êýg£¨x£©=min{f£¨x£©£¬x-$\frac{1}{x}$}£¨x£¾0£©£¬Èôº¯Êýh£¨x£©=g£¨x£©-cx2ΪÔöº¯Êý£¬ÇóʵÊýcµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑ֪ʵÊý1£¬t£¬4³ÉµÈ±ÈÊýÁУ¬ÔòÔ²×¶ÇúÏß$\frac{x^2}{t}+{y^2}$=1µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\frac{{\sqrt{2}}}{2}$»ò$\sqrt{3}$C£®$\frac{1}{2}$»ò$\sqrt{3}$D£®$\frac{{\sqrt{2}}}{2}$»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=lnx+ax+$\frac{1}{2}$£¬a¡ÊR£®
£¨¢ñ£©ÈôÖ±Ïß4x-2y-1=0ÓëÇúÏßy=f£¨x£©ÏàÇÐÓÚµãA£¬ÇóAµÄ×ø±ê£»
£¨¢ò£©ÊÇ·ñ´æÔÚa£¬Ê¹f£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄ×î´óÖµ²»³¬¹ýln$\frac{1}{{a}^{2}+1}$£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÇúÏßf£¨x£©=$\frac{aelnx}{x}$Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß¹ýµã£¨0£¬-2e£©£¬Ôòº¯Êýy=f£¨x£©µÄ¼«ÖµÎª£¨¡¡¡¡£©
A£®1B£®2C£®3D£®e

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÏÖÐèÉè¼Æ2016Äê´º¼¾ºþ±±Ê¡Öصã¸ßÖÐÁª¿¼Ð­×÷ÌåÆÚÖп¼ÊÔÊýѧÊÔ¾í£¬¸ÃÊÔ¾íº¬ÓдóСÏàµÈµÄ×óÓÒÏàµÈÁ½¸ö¾ØÐÎÀ¸Ä¿£¨¼´Í¼ÖÐÒõÓ°²¿·Ö£©£¬ÕâÁ½À¸µÄÃæ»ýÖ®ºÍΪ720cm2£¬ËÄÖܿհ׵Ŀí¶ÈΪ4cm£¬Á½À¸Ö®¼äµÄÖзì¿Õ°×µÄ¿í¶ÈΪ2cm£¬ÉèÊÔ¾íµÄ¸ßºÍ¿í·Ö±ðΪxcm£¬ycm£®
£¨¢ñ£©Ð´³öy¹ØÓÚxµÄº¯Êý±í´ïʽ£¬²¢Çó¸Ãº¯ÊýµÄ¶¨ÒåÓò£»
£¨¢ò£©ÈçºÎÈ·¶¨¸ÃÊÔ¾íµÄ¸ßÓë¿íµÄ³ß´ç£¨µ¥Î»£ºcm£©£¬ÄÜʹÊÔ¾íµÄÃæ»ý×îС£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ËıßÐÎABCDΪÁâÐΣ¬EB¡ÍÆ½ÃæABCD£¬EF¡ÎBD£¬EF=$\frac{1}{2}$BD£®
£¨¢ñ£©ÇóÖ¤£ºDF¡ÎÆ½ÃæAEC£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæAEF¡ÍÆ½ÃæAFC£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸