精英家教网 > 高中数学 > 题目详情
符合下列条件的三角形有且只有一个的是(  )
A、a=1,b=2,c=3
B、a=1,b=2,∠A=100°
C、a=1,b=
2
,∠A=30°
D、b=c=1,∠B=45°
考点:正弦定理
专题:解三角形
分析:利用正弦定理及三角形的三边关系判断即可.
解答: 解:A、1+2=3,不能构成三角形,无解;
B、由a<b,得到A<B,A为钝角,无解;
C、∵a=1,b=
2
,∠A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
2
×
1
2
1
=
2
2

∵a<b,∴A<B,
∴B=45°或135°,有两解;
D、∵b=c=1,∠B=45°,
∴∠C=45°,∠A=90°,a=
2
,有一解,
故选:D.
点评:此题考查了正弦定理,以及三角形三边关系,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列对应法则中,能建立从集合A={1,2,3,4,5}到集合B={0,3,8,15,24}的映射的是(  )
A、f:x→x2-x
B、f:x→x2-1
C、f:x2+1
D、f:x→x+(x-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

某房地产开发商投资81万元建一座写字楼,第一年维修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.
(Ⅰ)若扣除投资和各种维修费,则从第几年开始获取纯利润?
(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以47万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

按照斜二测画法得到,一个平面图形的直观图为腰长为2的等腰直角三角形,则这一平面图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=kx+1,若f(2)=0,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(2,-1),则
sinα-cosα
sinα+cosα
=(  )
A、3
B、
1
3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、函数f(x)=ax+1(a>0,且a≠1)的图象恒过定点(0,1)
B、函数f(x)=x-3在其定义域上是减函数
C、函数f(x)=2 
1
x
值域为(0,+∞)
D、函数f(x)=|log2x|在区间(1,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a2x-2a+1.若命题“?x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)是增函数,且f(1)=1.若对于任意x∈[0,1],总有4f2(x)-4(2-a)f(x)+5-4a≥0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案