| A. | 24种 | B. | 18种 | C. | 48种 | D. | 36种 |
分析 分类讨论,第一类,一年级的孪生姐妹在甲车上;第二类,一年级的孪生姐妹不在甲车上,再利用组合知识,问题得以解决.
解答 解:由题意,第一类,一年级的孪生姐妹在甲车上,甲车上剩下两个要来自不同的年级,从三个年级中选两个为C32=3,然后分别从选择的年级中再选择一个学生为C21C21=4,故有3×4=12种.
第二类,一年级的孪生姐妹不在甲车上,则从剩下的3个年级中选择一个年级的两名同学在甲车上,为C31=3,然后再从剩下的两个年级中分别选择一人为C21C21=4,这时共有3×4=12种
根据分类计数原理得,共有12+12=24种不同的乘车方式,
故选:A.
点评 本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | D. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {an}是等差数列 | B. | {bn}是等比数列 | C. | $\frac{{a}_{n}}{{b}_{n}}$=$\frac{\sqrt{2}}{2}$n | D. | anbn=$\frac{\sqrt{2}}{8}$n2(n+7) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com