精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线处的切线方程为,求实数的值;

2)若,且在区间上恒成立,求实数的取值范围;

3)若,且,讨论函数的单调性.

【答案】12.3)见解析

【解析】

1先求导,再由求解..

2)由在区间上恒成立,转化为上恒成立,令,再用导数法求解.

3)由,求导得,令

两种情况讨论.

1)由题意,得

,解得.

2)当时,在区间上恒成立,

上恒成立,

,则

,可得单调递增;

,可得单调递减;

所以,即,故.

3)当时,

时,

所以,在,∴,∴单调递增,

,∴,∴单调递减.

时,

,解得

所以,在内,,∴

单调递增;

内,,∴

单调递减.

综上, 时, 上单调递增,在单调递减.

时,∴单调递增;在∴单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图甲,ADBC是等腰梯形CDEF的两条高,,点M是线段AE的中点,将该等腰梯形沿着两条高ADBC折叠成如图乙所示的四棱锥P-ABCDEF重合,记为点P.

1)求证:

2)求点M到平面BDP距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈三中团委组织了古典诗词的知识竞赛,从参加考试的学生中抽出60名学生(男女各30名),将其成绩分成六组,其部分频率分布直方图如图所示.

)求成绩在的频率,补全这个频率分布直方图,并估计这次考试的众数和中位数;

)从成绩在的学生中选两人,求他们在同一分数段的概率;

)我们规定学生成绩大于等于80分时为优秀,经统计男生优秀人数为4人,补全下面表格,并判断是否有99%的把握认为成绩是否优秀与性别有关?

优秀

非优秀

合计

4

30

30

合计

60

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:

班级

参赛人数

平均数

中位数

众数

方差

45

83

86

85

82

45

83

84

85

133

某同学分析上表后得到如下结论:

①甲、乙两班学生的平均成绩相同;

②乙班优秀的人数少于甲班优秀的人数(竞赛得分分为优秀);

③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;

④乙班成绩波动比甲班小.

其中正确结论有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心轴的正半轴,直线被圆截得的弦长分别为,且.

1)求圆的方程;

2)问与直线轴,轴都相切的圆是否存在,若存在请求出所有满足条件的圆的方程,若不存在也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=x+m和圆x2+y2=1交于AB两点,O为坐标原点,若,则实数m=(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数,的倾斜角,且),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程及曲线的直角坐标方程;

2)已知点,曲线交于两点,与交于点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案