精英家教网 > 高中数学 > 题目详情
11.已知$f(x)={({log_{\frac{1}{2}}}x)^2}-2{log_{\frac{1}{2}}}x+4,x∈[{2,4}]$
(1)设$t={log_{\frac{1}{2}}}x,x∈[{2,4}]$,求t的最大值与最小值
(2)求f(x)的值域.

分析 (1)$t={log_{\frac{1}{2}}}x,x∈[{2,4}]$,可得t在x∈[2,4]上是减函数,即可得出.
(2)f(x)=t2-2t+4=(t-1)2+3=g(t),可得g(t)在t∈[-2,-1]单调递减,即可得出值域.

解答 解:(1)$t={log_{\frac{1}{2}}}x,x∈[{2,4}]$,
∴t在x∈[2,4]上是减函数,∴x=2时t有最大值$lo{g}_{\frac{1}{2}}2$=-1;x=4时t有最小值$lo{g}_{\frac{1}{2}}4$=-2.
(2)f(x)=t2-2t+4=(t-1)2+3=g(t),
∴g(t)在t∈[-2,-1]单调递减,∴t=-2(即x=4),取得最大值,g(-2)=12.
t=-1(即x=2),取得最小值,g(-1)=7.
所以函数f(x)的值域[7,12].

点评 本题考查了对数函数与二次函数的单调性、值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD,PA⊥面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=2PA=4BE=4
(1)求证:DE⊥面PAC
(2)取PD中点Q,求三棱锥P-QBE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x、y的值分别为(  )
A.2,5B.5,5C.5,8D.8,8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O是锐角△ABC的外接圆的圆心,且∠A=$\frac{π}{4}$,若$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=2m$\overrightarrow{AO}$,则m=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“?∈R,x2+2x+5=0”的否定是?x∈R,x2+2x+5≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点P是椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上的一点,且以点P及焦点F1,F2为顶点的三角形面积等于1,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“x=1”是“x2-2x+1=0”的 (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在锐角△ABC中,AB=3,AC=4,SABC=3$\sqrt{3}$,则cosA=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\sqrt{\frac{1}{2x-3}}$的定义域为($\frac{3}{2}$,+∞).

查看答案和解析>>

同步练习册答案