精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,直线.

(1)若直线与抛物线相切,求直线的方程;

(2)设,直线与抛物线交于不同的两点,若存在点,满足,且线段互相平分(为原点),求的取值范围.

【答案】(1)(2)见解析

【解析】

1)联立直线方程与抛物线方程,利用即可求解。

2)由直线与抛物线相交可得:,由(1)可得 ,由线段OC与AB互相平分可得四边形OACB为平行四边形,得到C,利用得到,即: =-1,再将 代入即可求得,对的范围分类,利用基本不等式即可得解。

解:(1)法1:由

所以,所求的切线方程为

法2:因为直线恒过(0,-4),所以由

设切点为,由题可得,直线与抛物线在轴下方的图像相切,

所以切线方程为,将坐标(0,-4)代入得

即切点为(8,-8),再将该点代入得,

所以,所求的切线方程为

(2)由

所以

因为线段OC与AB互相平分,所以四边形OACB为平行四边形

,即C

得,

法1:所以 =-1

,又

所以 ,所以

法2:因为

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆Cab0)的右焦点为F,椭圆C上的两点AB关于原点对称,且满足|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知直线2xy﹣1=0与直线x﹣2y+1=0交于点P

求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)

求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2平面ABCDE分别是AC的中点.

求证:平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用种不同的颜色给图中的个格子涂色,每个格子涂一种颜色,要求最多使用种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

1)甲不在两端;

2)甲、乙、丙三个必须在一起;

3)甲、乙必须在一起,且甲、乙都不能与丙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于AB的一点,平面ABC,且,点M为线段VB的中点.

1)求证:平面VAC

2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的值;

(2)已知某班共有人,记这人生日至少有两人相同的概率为,将一年看作365天.

(i)求的表达式;

(ii)估计的近似值(精确到0.01).

参考数值:.

查看答案和解析>>

同步练习册答案