【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,平面ABC,且,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)根据线面垂直的判定定理即可证明平面VAC;
(2)由AB与平面VAC所成角的余弦值为,求出,建立空间直角坐标系,利用向量法能求出二面角的余弦值.
(1)证明:因为平面ABC,平面ABC,
所以,
又因为点C为圆O上一点,且AB为直径,
所以,
又因为VC,平面VAC,,
所以平面VAC.
(2)由(1)知平面VAC,
所以AB与平面VAC的所成角就是,
在,,,
.
由(1)得,,,分别以AC,BC,VC,
所在的直线为x轴,y轴,z轴建立空间直角坐标系C-xyz如图:
则,,,
设平面VAC的法向量,,,
设平面VAM的法向量,
由,令,
得,.
设二面角M-VA-C的平面角为,
所以,所以所求二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.
(1)求证:;
(2)设为的中点,点在线段上,若直线平面,求的长;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,直线:.
(1)若直线与抛物线相切,求直线的方程;
(2)设,直线与抛物线交于不同的两点,,若存在点,满足,且线段与互相平分(为原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在五边形AEBCD中,,C,,,(如图).将△ABE沿AB折起,使平面ABE⊥平面ABCD,线段AB的中点为O(如图).
(1)求证:平面ABE⊥平面DOE;
(2)求平面EAB与平面ECD所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计 | |||
男生身高 | |||
女生身高 | |||
总计 |
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级期末考试后,对数学成绩在分以上(含分)的学生成绩进行统计,其频率分布直方图如图所示.其中分数段的人数为人.
(1)根据频率分布直方图,写出该班级学生数学成绩的众数;
(2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示,
(1)求a的值及通过电子阅读的居民的平均年鹼;
(2)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断是否有97.5%的把握认为阅读方式与年齡有关?
参考公式:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com