精英家教网 > 高中数学 > 题目详情

【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于AB的一点,平面ABC,且,点M为线段VB的中点.

1)求证:平面VAC

2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

(1)根据线面垂直的判定定理即可证明平面VAC

(2)由AB与平面VAC所成角的余弦值为,求出,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

(1)证明:因为平面ABC平面ABC

所以

又因为点C为圆O上一点,且AB为直径,

所以

又因为VC平面VAC

所以平面VAC.

(2)由(1)知平面VAC

所以AB与平面VAC的所成角就是

.

由(1)得,分别以ACBCVC

所在的直线为x轴,y轴,z轴建立空间直角坐标系C-xyz如图:

设平面VAC的法向量

设平面VAM的法向量

,令

.

设二面角M-VA-C的平面角为

所以,所以所求二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面是正三角形,的交点恰好是中点,又.

(1)求证:

(2)设的中点,点在线段上,若直线平面,求的长;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线.

(1)若直线与抛物线相切,求直线的方程;

(2)设,直线与抛物线交于不同的两点,若存在点,满足,且线段互相平分(为原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五边形AEBCD中,C(如图).ABE沿AB折起,使平面ABE⊥平面ABCD,线段AB的中点为O(如图).

1)求证:平面ABE⊥平面DOE

2)求平面EAB与平面ECD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?

(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?

总计

男生身高

女生身高

总计

(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.

参考公式:

参考数据:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级期末考试后,对数学成绩在分以上(含分)的学生成绩进行统计,其频率分布直方图如图所示.其中分数段的人数为.

1)根据频率分布直方图,写出该班级学生数学成绩的众数;

2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若函数有两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示,

(1)求a的值及通过电子阅读的居民的平均年鹼;

(2)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断是否有97.5%的把握认为阅读方式与年齡有关?

参考公式:.

查看答案和解析>>

同步练习册答案