【题目】在五边形AEBCD中,,C,,,(如图).将△ABE沿AB折起,使平面ABE⊥平面ABCD,线段AB的中点为O(如图).
(1)求证:平面ABE⊥平面DOE;
(2)求平面EAB与平面ECD所成的锐二面角的大小.
【答案】(1)见解析(2)45°
【解析】
(1)根据矩形的性质,求得,再由等腰三角形的性质,证得,由线面垂直的判定,可得AB⊥平面EOD,再由面面垂直的判定定理,即可证得平面ABE⊥平面EOD;
(2)由(1)以O为坐标原点,以OB,OD,OE所在直线分别为轴建立如图所示的空间直角坐标系,求得平面ECD和平面ABE的法向量,利用向量的夹角公式,即可求解.
(1)由题意,O是线段AB的中点,则.
又,则四边形OBCD为平行四边形,又,则,
因,,则.
,则AB⊥平面EOD.
又平面ABE,故平面ABE⊥平面EOD.
(2)由(1)易知OB,OD,OE两两垂直,以O为坐标原点,以OB,OD,OE所在直线分别为轴建立如图所示的空间直角坐标系,
△EAB为等腰直角三角形,且AB=2CD=2BC,
则,取,
则O(0,0,0),A(-1,0,0),B(1,0,0),C(1,1,0),D(0,1,0),
E(0,0,1),则,,
设平面ECD的法向量为,
则有取 ,得平面ECD的一个法向量,
因OD⊥平面ABE.则平面ABE的一个法向量为,
设平面ECD与平面ABE所成的锐二面角为θ,则
,
因为,所以,
故平面ECD与平面ABE所成的镜二面角为45°.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,用种不同的颜色给图中的个格子涂色,每个格子涂一种颜色,要求最多使用种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有( )
A.种B.种C.种D.种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不在两端;
(2)甲、乙、丙三个必须在一起;
(3)甲、乙必须在一起,且甲、乙都不能与丙相邻.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,平面ABC,且,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.若为真命题,则,均为假命题;
B.命题“若,则”的逆否命题为真命题;
C.等比数列的前项和为,若“”则“”的否命题为真命题;
D.“平面向量与的夹角为钝角”的充要条件是“”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=4y的焦点为F,过点P(-2,2)的直线l与抛物线C交于A,B两点.
(1)当点P为A、B的中点时,求直线AB的方程;
(2)求|AF||BF|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com