【题目】下列说法正确的是( )
A.若
为真命题,则
,
均为假命题;
B.命题“若
,则
”的逆否命题为真命题;
C.等比数列
的前
项和为
,若“
”则“
”的否命题为真命题;
D.“平面向量
与
的夹角为钝角”的充要条件是“
”
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中
中,曲线
的参数方程为
(
为参数,
).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)设
是曲线
上的一个动点,若点
到直线
的距离的最大值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在五边形AEBCD中,
,C
,
,
,
(如图).将△ABE沿AB折起,使平面ABE⊥平面ABCD,线段AB的中点为O(如图).
![]()
(1)求证:平面ABE⊥平面DOE;
(2)求平面EAB与平面ECD所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级期末考试后,对数学成绩在
分以上(含
分)的学生成绩进行统计,其频率分布直方图如图所示.其中
分数段的人数为
人.
![]()
(1)根据频率分布直方图,写出该班级学生数学成绩的众数;
(2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,
,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于
分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为圆
上任意一点,点
,线段
的中垂线交
于点
.
(1)求动点
的轨迹方程;
(2)若动直线
与圆
相切,且与动点
的轨迹交于点
、
,求
面积的最大值(
为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为菱形,
底面ABCD,
,
,E、F分别是PC和AB的中点.
(1)证明:
平面PAD;
(2)若
,求PD与平面PBC所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC为正三角形,且BC=CD=2,CD⊥BC,将△ABC沿BC翻折.
![]()
(1)当AD=2时,求证:平面ABD⊥平面BCD;
(2)若点A的射影在△BCD内,且直线AB与平面ACD所成角为60°,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com