精英家教网 > 高中数学 > 题目详情

【题目】已知点为圆上任意一点,点,线段的中垂线交于点.

(1)求动点的轨迹方程;

(2)若动直线与圆相切,且与动点的轨迹交于点,求面积的最大值(为坐标原点).

【答案】(1)

(2).

【解析】

1)由题意可得由椭圆的定义可得轨迹方程.

(2)先考虑动直线斜率存在时,设为y=kx+m与椭圆方程联立,由直线l与圆O相切,利用根的判别式求出km的关系,由弦长公式、三角形面积公式,结合换元法利用二次函数求最值的方法能求出OEF面积的最大值,再考虑斜率不存在时,可直接求得点的坐标,求得面积,比较后得到结论.

(1)由题知

的轨迹是以为焦点的椭圆,其方程为.

(2)①当的斜率存在时.设 的方程为

得:

可得 与圆相切,

从而

,得

.

当且仅当时取等号.

.

②当的斜率不存在时.易得的方程为.此时

.

由①②可得:的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.

(1)请解释的实际意义,并求的表达式;

(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数fx)的极值点的个数;

2)若fx)有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.为真命题,则均为假命题;

B.命题,则的逆否命题为真命题;

C.等比数列的前项和为,若的否命题为真命题;

D.平面向量的夹角为钝角的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:

1)求观众评分的平均数?

2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?

3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99.9%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于55岁的人数于

年龄低于55岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),椭圆C上的点到焦点距离的最大值为9,最小值为1

1)求椭圆C的标准方程;

2)求椭圆C上的点到直线l4x5y+400的最小距离?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)

(1) 求摄影者到立柱的水平距离和立柱的高度;

(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.

查看答案和解析>>

同步练习册答案