精英家教网 > 高中数学 > 题目详情

【题目】设函数处取最小值.

(1)的值并化简

(2)ABC中分别是角AB C的对边已知,求角C.

【答案】(1)(2)

【解析】

试题分析:(1)利用三角函数公式可将函数式化简,由处取最小值可求得的值,进而得到函数解析式(2)由可得到A角,结合正弦定理可求得B角大小,由三角形内角和可求得C角大小

试题解析:1 1分

…… 2分

因为函数f (x)在处取最小值,所以,(3分)由诱导公式知,

因为,所以.(4分) 所以 …… 5分

2)因为,所以,因为角A为ABC的内角,所以. 6分

又因为所以由正弦定理,得,

也就是, …… 8分

因为,所以. …… 10分(对1个1分)

时,; …… 11分

时,. …… 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)若在其定义域内为单调递增函数,求实数的取值范围;

(Ⅱ)设,且,若在[1e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若函数的图象在处的切线方程为,求 的值;

(2)若时,函数内是增函数,求的取值范围;

(3)当时,设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x2,2x1,4},B={x5,1x,9}.

(1若x=3,求

(2,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当时,求的值域;

(2)若b为正实数,的最大值为M,最小值为m,且满足,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+12f(an-1)+1,且a1=3,an>1.

(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;

(2)设cn=nbn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH;

(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有10个著名景点,其中8 个为日游景点,2个为夜游景点.某旅行团要从这10个景点中选5个作为二日游的旅游地.行程安排为第一天上午、下午、晚上各一个景点,第二天上午、下午各一个景点.

(1)甲、乙两个日游景点至少选1个的不同排法有多少种?

(2)甲、乙两日游景点在同一天游玩的不同排法有多少种?

(3)甲、乙两日游景点不同时被选,共有多少种不同排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.

(1)求点Q的轨迹C2的直角坐标方程;

(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案