精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.

(1)求点Q的轨迹C2的直角坐标方程;

(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.

【答案】见解析

【解析】(1)根据题意得,

曲线C1的直角坐标方程为x2+y2-4y=12,

设点P(x′,y′),Q(x,y),

根据中点坐标公式,得

代入x2+y2-4y=12,

得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4,

(2)直线l的直角坐标方程为y=ax,根据题意,得圆心(3,1)到直线的距离d≤=1,即≤1,

解得0≤a≤.

∴实数a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数处取最小值.

(1)的值并化简

(2)ABC中分别是角AB C的对边已知,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出的值;

(2)利用合情推理的“归纳推理思想”,归纳出之间的关系式,并根据你得到的关系式求出的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是矩形,且,若的中点,且

)求证: 平面

)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求的值;(2)若对任意的,都有成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分) 已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区工商局、消费者协会在号举行了以携手共治,畅享消费为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;

)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

同步练习册答案