精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}\sqrt{{x^2}+1},x≥0}\\{-ln(1-x),x<0}\end{array}}$,若函数F(x)=f(x)-kx有且只有两个零点,则k的取值范围为($\frac{1}{2}$,1).

分析 求出双曲线的渐近线方程,y=-ln(1-x)在x=0处的切线方程,通过图象观察,即可得出结论.

解答 解:由题意,x≥0,f(x)=$\frac{1}{2}$$\sqrt{1+{x}^{2}}$,
为双曲线4y2-x2=1在第一象限的部分,
渐近线方程为y=$\frac{1}{2}$x;
由y=-ln(1-x),
可得y′=$\frac{1}{1-x}$=1,可得x=0,
即y=-ln(1-x)在x=0处的切线方程为y=x,
此时函数F(x)=f(x)-kx有且只有1个零点,
若函数F(x)=f(x)-kx有且只有两个零点,
则k的取值范围为($\frac{1}{2}$,1),
故答案为:($\frac{1}{2}$,1).

点评 本题考查函数的零点,考查导数知识的运用,考查学生分析解决问题的能力,以及数形结合的思想方法,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=-x3+ax2+bx+c的一个极值点是x=1,则9a+3b的最小值是(  )
A.10B.$2\sqrt{3}$C.$6\sqrt{3}$D.$4\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图中的错误是(  )
A.i没有赋值B.循环结构有错C.s的计算不对D.判断条件不成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,连接其四个顶点组成的菱形面积为$8\sqrt{3}$,且a2、c2、b2成等差数列
(1)求椭圆E的方程;
(2)若斜率为1的直线l与椭圆E交于A、B两点,且点P(-3,2)在线段AB的垂直平分线上,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.
给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某单位有男职工600名,女职工400人,在单位想了解本单位职工的运动状态,根据性别采取分层抽样的方法从全体职工中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该单位职工平均每天运动的时间范围是[0,2].若规定平均每天运动的时间不少于1小时的为“运动达人”,低于1小时的为“非运动达人”.根据调查的数据,按性别与是否为运动达人进行统计,得到如下2×2列联表.
运动时间
性别
运动达人非运动达人合计
36
26
合计100
(Ⅰ)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与是否为运动达人有关;
(Ⅱ)将此样本的频率估计为总体的概率,随机调查该单位的3名男职工,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈(90°,180°),$\overrightarrow{b}$=(1,1),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.φB.45°+φC.135°-φD.φ-45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{a}{cosA}$=$\frac{{\sqrt{3}b}}{sinB}$.
(1)求A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(0,+∞)上的可导函数f(x)满足:当x∈(0,e)时f(x)+xf′(x)>$\frac{1}{e}$当x∈(e,+∞)时f(x)+xf′(x)<$\frac{1}{e}$则下列对于2f(2),3f(3)大小关系的结论成立的是(  )
A.2f(2)>3f(3)B.2f(2)<3f(3)C.2f(2)=3f(3)D.无法确定

查看答案和解析>>

同步练习册答案