12£®Ä³µ¥Î»ÓÐÄÐÖ°¹¤600Ãû£¬Å®Ö°¹¤400ÈË£¬ÔÚµ¥Î»ÏëÁ˽Ȿµ¥Î»Ö°¹¤µÄÔ˶¯×´Ì¬£¬¸ù¾ÝÐÔ±ð²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨´ÓÈ«ÌåÖ°¹¤ÖгéÈ¡100ÈË£¬µ÷²éËûÃÇÆ½¾ùÿÌìÔ˶¯µÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©£¬Í³¼Æ±íÃ÷¸Ãµ¥Î»Ö°¹¤Æ½¾ùÿÌìÔ˶¯µÄʱ¼ä·¶Î§ÊÇ[0£¬2]£®Èô¹æ¶¨Æ½¾ùÿÌìÔ˶¯µÄʱ¼ä²»ÉÙÓÚ1СʱµÄΪ¡°Ô˶¯´ïÈË¡±£¬µÍÓÚ1СʱµÄΪ¡°·ÇÔ˶¯´ïÈË¡±£®¸ù¾Ýµ÷²éµÄÊý¾Ý£¬°´ÐÔ±ðÓëÊÇ·ñΪÔ˶¯´ïÈ˽øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£®
Ô˶¯Ê±¼ä
ÐÔ±ð
Ô˶¯´ïÈË·ÇÔ˶¯´ïÈ˺ϼÆ
ÄÐ36
Ů26
ºÏ¼Æ100
£¨¢ñ£©Çë¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý²¹³äÍêÕû£¬²¢Í¨¹ý¼ÆËãÅжÏÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏÂÈÏΪÐÔ±ðÓëÊÇ·ñΪÔ˶¯´ïÈËÓйأ»
£¨¢ò£©½«´ËÑù±¾µÄƵÂʹÀ¼ÆÎª×ÜÌåµÄ¸ÅÂÊ£¬Ëæ»úµ÷²é¸Ãµ¥Î»µÄ3ÃûÄÐÖ°¹¤£¬Éèµ÷²éµÄ3ÈËÖÐÔ˶¯´ïÈ˵ÄÈËÊýÎªËæ»ú±äÁ¿X£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©¼°·½²îD£¨X£©£®
¸½±í¼°¹«Ê½£º
¡¡P£¨K2¡Ýk0£©¡¡0.150.10¡¡0.05¡¡0.025¡¡0.010¡¡
¡¡k0¡¡2.0722.706¡¡3.841¡¡¡¡5.0246.635
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®

·ÖÎö £¨I£©¼ÆËãK2£¬¸ù¾ÝÁÙ½çÖµ±í×÷³ö½áÂÛ£»
£¨II£©·Ö±ð¼ÆËãX=0£¬1£¬2£¬3ʱµÄ¸ÅÂʵóö·Ö²¼ÁУ¬¸ù¾Ý·Ö²¼ÁеóöÊýѧÆÚÍûºÍ·½²î£®

½â´ð ½â£º£¨I£©ÓÉÌâÒ⣬¸Ãµ¥Î»¸ù¾ÝÐÔ±ð²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨³éÈ¡µÄ100ÈËÖУ¬ÓÐ60ÈËΪÄÐÖ°¹¤£¬40ÈËΪŮְ¹¤£¬¾Ý´Ë2¡Á2ÁÐÁª±íÖеÄÊý¾Ý²¹³äÈçÏ£®


Ô˶¯Ê±¼ä
ÐÔ±ð
Ô˶¯´ïÈË·ÇÔ˶¯´ïÈ˺ϼÆ
ÄÐ362460
Ů142640
ºÏ¼Æ5050100
¡­£¨2·Ö£©
ÓɱíÖÐÊý¾ÝµÃ¹Û²âÖµK2=$\frac{100¡Á£¨36¡Á26-14¡Á24£©^{2}}{60¡Á40¡Á50¡Á50}$=6£¾5.024£¬
ËùÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏ£¬¿ÉÒÔÈÏΪÐÔ±ðÓëÊÇ·ñΪÔ˶¯´ïÈËÓйأ®¡­£¨5·Ö£©
£¨2£©Ëæ»úµ÷²éÒ»ÃûÄÐÉú£¬ÔòÕâÃûÄÐÉúΪÔ˶¯´ïÈ˵ĸÅÂÊΪP=$\frac{36}{60}$=$\frac{3}{5}$£®
XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¡àP£¨X=0£©=£¨1-$\frac{3}{5}$£©3=$\frac{8}{125}$£¬P£¨X=1£©=C31£¨$\frac{3}{5}$£©£¨1-$\frac{3}{5}$£©2=$\frac{36}{125}$£¬
P£¨X=2£©=C32£¨$\frac{3}{5}$£©2£¨1-$\frac{3}{5}$£©=$\frac{54}{125}$£¬P£¨X=3£©=£¨$\frac{3}{5}$£©3=$\frac{27}{125}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º
X0123
P$\frac{8}{125}$$\frac{36}{125}$$\frac{54}{125}$$\frac{27}{125}$
E£¨X£©=3¡Á$\frac{3}{5}$=$\frac{9}{5}$£®D£¨X£©=3¡Á$\frac{3}{5}$¡Á$\frac{2}{5}$=$\frac{18}{25}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Óã¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍû¡¢·½²îµÄÇ󷨣¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=3n-50£¬Ôòµ±nµÈÓÚ£¨¡¡¡¡£©Ê±£¬SnÈ¡µÃ×îСֵ£¿
A£®16B£®17C£®18D£®16»ò17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÊÇxºÍyÖ®¼äµÄÒ»×éÊý¾Ý
x0123
y1357
Ôòy¹ØÓÚxµÄÏßÐԻع鷽³ÌΪy=bx+a£¬¶ÔÓ¦µÄÖ±Ï߱عýµã£¨¡¡¡¡£©
A£®£¨2£¬2£©B£®£¨$\frac{3}{2}£¬2$£©C£®£¨ $\frac{3}{2}£¬4$£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨2x+$\frac{¦Ð}{3}$£©£¬ÆäÖÐx¡ÊR£¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý
B£®f£¨x£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇ $x=\frac{¦Ð}{3}$
C£®f£¨x£©µÄ×î´óֵΪ2
D£®½«º¯Êý$y=\sqrt{3}sin2x$µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½º¯Êýf£¨x£©µÄͼÏó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{\frac{1}{2}\sqrt{{x^2}+1}£¬x¡Ý0}\\{-ln£¨1-x£©£¬x£¼0}\end{array}}$£¬Èôº¯ÊýF£¨x£©=f£¨x£©-kxÓÐÇÒÖ»ÓÐÁ½¸öÁãµã£¬ÔòkµÄȡֵ·¶Î§Îª£¨$\frac{1}{2}$£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®sin315¡ãµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{\sqrt{3}}{2}$B£®$\frac{\sqrt{3}}{2}$C£®$\frac{\sqrt{2}}{2}$D£®-$\frac{\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÇúÏßf£¨x£©=$\frac{1}{2}$x2+lnxµÄÇÐÏßµÄбÂʵÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬LµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©ÇóLºÍCµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖªP£¨0£¬1£©£¬LÓëC½»ÓÚA¡¢BÁ½µã£¬Çó|PA||PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AP¡ÍBD£¬´¹×ãΪP£¬ÇÒAP=2£¬Ôò$\overrightarrow{AP}$•$\overrightarrow{AC}$=8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸