精英家教网 > 高中数学 > 题目详情
9.在△ABC中,内角A、B、C的对边分别为a,b,c,若asinBcosC+csinBcosA=0.5b,a>b,则B=(  )
A.30°B.60°C.120°D.150°

分析 在△ABC中,利用正弦定理与两角和的正弦可知,sin(A+C)=sinB=$\frac{1}{2}$,结合a>b,即可求得答案.

解答 解:在△ABC中,∵asinBcosC+csinBcosA=$\frac{1}{2}$b,
∴由正弦定理得:sinAsinBcosC+sinCsinBcosA=$\frac{1}{2}$sinB,sinB≠0,
∴sinAcosC+sinCcosA=$\frac{1}{2}$,
∴sin(A+C)=$\frac{1}{2}$,
又A+B+C=π,
∴sin(A+C)=sin(π-B)=sinB=$\frac{1}{2}$,又a>b,
∴B=30°.
故选:A.

点评 本题考查两角和与差的正弦函数与正弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置.生产x台的收入函数为R(x)=3000x-20x2(单位元),其成本函数为C(x)=600x+2000(单位元),利润等于收入与成本之差.
①求出利润函数p(x)及其边际利润函数Mp(x)
②求出的利润函数p(x)及其边际利润函数Mp(x)是否具有相同的最大值;
③你认为本题中边际利润函数Mp(x)最大值的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有一个表面都涂有红颜色的正方体,被均匀地锯成了512个小正方体,将这些小正方体混合后,放入一个口袋,现从口袋中任意取出一个正方体,恰有两个面涂有红色的概率是$\frac{9}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}中,an=46-3n,则当Sn取最大值时,n=(  )
A.14B.15C.15或16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平行四边形ABCD中,$\overrightarrow{AB}$=(1,2),$\overrightarrow{AD}$=(-1,4),则$\overrightarrow{AC}$=(  )
A.(-3,3)B.(2,-2)C.(-2,2)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的a∈[-1,1],f(x)=x2+(a-4)x+4-2a的值恒大于0,则x的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别是a,b,c,若b=$\sqrt{3}$,c=3,B=30°,则a=(  )
A.$\sqrt{3}$B.$12\sqrt{3}$C.$\sqrt{3}或2\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}的前n项和为Sn,满足a1=1,Sn=an+1+n,则其通项公式为${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x+x=0的根所在的区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

同步练习册答案