精英家教网 > 高中数学 > 题目详情
14.对任意的a∈[-1,1],f(x)=x2+(a-4)x+4-2a的值恒大于0,则x的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,1)∪(2,+∞)D.(1,2)

分析 把二次函数的恒成立问题转化为y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.

解答 解:原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需$\left\{\begin{array}{l}{(-1)•(x-2)+{x}^{2}-4x+4>0}\\{1×(x-2)+{x}^{2}-4x+4>0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x>3\\;或x<2}\\{x>2或x<1}\end{array}\right.$,
∴x<1或x>3.
故选:A.

点评 此题是一道常见的题型,把关于x的函数转化为关于a的函数,构造一次函数,即变换主元,因为一次函数是单调函数易于求解,对此类恒成立题要注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.空间直角坐标系中,已经A(-1,2,-3)则A在yOz内的射影P1和在x轴上投影P2之间的距离为$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a=log10072014,b=log10082016,c=log10092018,则(  )
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C方程为x2+y2=2,过点P(-1,1)与圆C相切的直线方程为(  )
A.x-y+2=0B.x+y-1=0C.x-y+1=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,内角A、B、C的对边分别为a,b,c,若asinBcosC+csinBcosA=0.5b,a>b,则B=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在四棱锥P-ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:AB⊥面BEF;
(2)设PA=h,若二面角E-BD-C大于45°,求h的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>0,b>0,若不等式$\frac{3b+a}{b}$≥$\frac{(m+2)a+b}{2a+b}$恒成立,则m的最大值为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知关于x的不等式x2-2x-3>0和x2+bx+c≤0的解集分别为A,B,若A∪B=R,A∩B=(3,4],则b+c=(  )
A.7B.-7C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π).求:
(Ⅰ)sin(α-$\frac{π}{3}$)的值;
(Ⅱ)cos2α的值.

查看答案和解析>>

同步练习册答案