分析 (Ⅰ)由已知利用同角三角函数基本关系式可求sinα的值,进而利用两角差的正弦函数公式,特殊角的三角函数值即可计算得解.
(Ⅱ)利用二倍角的余弦函数公式即可计算得解.
解答 (本小题满分8分)
解:(Ⅰ)∵cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,…(2分)
∴sin(α-$\frac{π}{3}$)=sinαcos$\frac{π}{3}$-cosαsin$\frac{π}{3}$=$\frac{3+4\sqrt{3}}{10}$,…(5分)
(Ⅱ)cos2α=2cos2α-1=$\frac{7}{25}$…(8分)
点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式,特殊角的三角函数值,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1)∪(3,+∞) | B. | (1,3) | C. | (-∞,1)∪(2,+∞) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [1,8) | C. | (4,8) | D. | [4,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-$\frac{1}{2}$) | B. | (-$\frac{1}{2}$,0) | C. | (0,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com