精英家教网 > 高中数学 > 题目详情
2.已知圆C方程为x2+y2=2,过点P(-1,1)与圆C相切的直线方程为(  )
A.x-y+2=0B.x+y-1=0C.x-y+1=0D.x+y+2=0

分析 由条件根据过圆x2+y2=r2上的一点(x0,y0)的圆的切线方程为 x0x+y0 y=r2,可得结论.

解答 解:根据点P(-1,1)在圆x2+y2=2上,故过点P(-1,1)与圆x2+y2=2相切的直线的方程为-x+y=2,
即x-y+2=0,
故选A.

点评 本题主要考查求圆的切线方程,利用了过圆x2+y2=r2上的一点(x0,y0)的圆的切线方程为 x0x+y0 y=r2,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cos2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$可以化为f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)).
(1)求出A,ω,φ的值并求函数f(x)的单调增区间;
(2)若等腰△ABC中,A=φ,a=2,求角B,边c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于实数a和b,定义运算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,设函数f(x)=(x+2)?(3-x),x∈R,若方程f(x)=c恰有两个不同的解,则实数c的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F1作一条倾角为45°的直线交椭圆于A、B两点,若满足$\overrightarrow{A{F_1}}$=$\frac{1}{2}$$\overrightarrow{{F_1}B}$.
(1)求椭圆C的离心率;
(2)若椭圆C的左焦点F2到直线AB的距离为2,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}中,an=46-3n,则当Sn取最大值时,n=(  )
A.14B.15C.15或16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.全集U=R,A⊆U,B⊆R,集合A={x∈N|1≤x≤10},集合B={x|x2+x-6=0},则图中阴影部分表示的集合为(  )
A.{2}B.{-3}C.{-3,2}D.{-2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的a∈[-1,1],f(x)=x2+(a-4)x+4-2a的值恒大于0,则x的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=3,an+1=2an-1.
(1)假设bn=an-1,求{bn}的通项公式和前n项和Sn
(2)设${c_n}=\frac{{{2^{n+1}}}}{{{a_n}{a_{n+1}}}}$,求{cn}的前n项和Tn的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个关系式中,正确的是(  )
A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}

查看答案和解析>>

同步练习册答案