【题目】如图,在四棱锥
中,已知
底面
,
,
,
,
,
是
上一点.
![]()
(1)求证:平面
平面
;
(2)若
是
的中点,且二面角
的余弦值是
,求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知函数
在点
处的切线方程为
.
(1)求
,
;
(2)函数
图像与
轴负半轴的交点为
,且在点
处的切线方程为
,函数
,
,求
的最小值;
(3)关于
的方程
有两个实数根
,
,且
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周礼夏官马质》中记载“马量三物:一日戎马,二日田马,三日驽马”,其意思为马按照品种可以分为三个等级,一等马为戎马,二等马为田马,三等马为驽马.假设在唐朝的某个王爷要将7匹马(戎马3匹,田马、驽马各2匹)赏赐给甲、乙、丙3人,每人至少2匹,则甲和乙都得到一等马的分法总数为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则“课程‘乐’不排在第一周,课程‘御’不排在最后一周”的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,椭圆
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求经过椭圆
右焦点
且与直线
垂直的直线的极坐标方程;
(2)若
为椭圆
上任意-点,当点
到直线
距离最小时,求点
的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com