【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知正四棱锥
的底面边长为
高为
其内切球与面
切于点
,球面上与
距离最近的点记为
,若平面
过点
,
且与
平行,则平面
截该正四棱锥所得截面的面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
ABCD中,
和
都是等边三角形,平面PAD
平面ABCD,且
,
.
![]()
(1)求证:CD
PA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的左顶点为
,右焦点为
,
,
为椭圆
上两点,圆
.
(1)若
轴,且满足直线
与圆
相切,求圆
的方程;
(2)若圆
的半径为2,点
,
满足
,求直线
被圆
截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,
底面ABC,
,
,
,D,E分别为棱BC,PC的中点,点F在棱PA上,设
.
![]()
(1)当
时,求异面直线DF与BE所成角的余弦值;
(2)试确定t的值,使二面角C-EF-D的平面角的余弦值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列两个命题,命题甲:平面α与平面β相交;命题乙:相交直线l,m都在平面α内,并且都不在平面β内,直线l,m中至少有一条与平面β相交.则甲是乙的( )
A.充分且必要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com