【题目】在平面直角坐标系
中,已知椭圆
的左顶点为
,右焦点为
,
,
为椭圆
上两点,圆
.
(1)若
轴,且满足直线
与圆
相切,求圆
的方程;
(2)若圆
的半径为2,点
,
满足
,求直线
被圆
截得弦长的最大值.
【答案】(1)![]()
(2)![]()
【解析】
(1)根据题意先计算出
点坐标,然后得到直线
的方程,根据直线与圆相切,得到半径的大小,从而得到所求圆的方程;(2)先计算
斜率不存在时,被圆
截得弦长,
斜率存在时设为
,与椭圆联立,得到
和
,代入到
得到
的关系,表示出直线
被圆
截得的弦长,代入
的关系,从而得到弦长的最大值.
解:(1)因为椭圆
的方程为
,
所以
,
,
因为
轴,所以
,
根据对称性,可取
,
则直线
的方程为
,即
.
因为直线
与圆
相切,得
,
所以圆的方程为
.
![]()
(2)圆
的半径为2,可得圆
的方程为
.
①当
轴时,
,所以
,
得
,
此时得直线
被圆
截得的弦长为
.
②当
与
轴不垂直时,设直线
的方程为
,
,
,
首先由
,得
,
即
,所以
(*).
联立
,消去
得
,
在
时,
,![]()
代入(*)式,得
,
由于圆心
到直线
的距离为
,
所以直线
被圆
截得的弦长为
,
故当
时,
有最大值为
.
综上,因为
,
所以直线
被圆
截得的弦长的最大值为
.
![]()
科目:高中数学 来源: 题型:
【题目】椭圆
的右焦点为F到直线
的距离为
,抛物线
的焦点与椭圆E的焦点F重合,过F作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
.
(1)求椭圆E及抛物线G的方程;
(2)过点F且斜率为k的直线l交椭圆于A,B点,交抛物线于M,N两点,如图所示,请问是否存在实常数
,使
为常数,若存在,求出
的值;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学号为1,2,3的三位小学生,在课余时间一起玩“掷骰子爬楼梯”游戏,规则如下:投掷一颗骰子,将每次出现点数除以3,若学号与之同余(同除以3余数相同),则该小学生可以上2阶楼梯,另外两位只能上1阶楼梯,假定他们都是从平地(0阶楼梯)开始向上爬,且楼梯数足够多.
(1)经过2次投掷骰子后,学号为1的同学站在第X阶楼梯上,试求X的分布列;
(2)经过多次投掷后,学号为3的小学生能站在第n阶楼梯的概率记为
,试求
,
,
的值,并探究数列
可能满足的一个递推关系和通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前n项和为
,把满足条件![]()
的所有数列
构成的集合记为
.
(1)若数列
的通项为
,则
是否属于
?
(2)若数列
是等差数列,且
,求
的取值范围;
(3)若数列
的各项均为正数,且
,数列
中是否存在无穷多项依次成等差数列,若存在,给出一个数列
的通项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由直三棱柱
和四棱锥
构成的几何体中,
,平面
平面
.
![]()
(Ⅰ)求证:
;
(Ⅱ)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求
的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com