【题目】如图,在四棱锥
中,已知底面
是边长为2的菱形,
平面
,
,
,
分别是棱
,
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)见解析;(2)
.
【解析】
(1)可先证线线平行,然后根据线面平行的判定定理证明线面平行,也可先根据线线平行证明面面平行,再根据面面平行证明线面平行;
(2)可利用传统法,先找到线在直角三角形求线面角的正弦值,也可根据题中的线面位置关系建立空间直角坐标系,利用空间向量法进行求解.
(1)如图所示,取
的中点
,连接
,
,
因为
是棱
的中点,所以
是
的中位线,所以
,
又因为
平面
,
平面
,所以
平面
,
又由
是棱
的中点,
为
的中点,可得
,
又因为
平面
,
平面
,所以
平面
,
又由
,且
平面
,所以平面
平面
,
又因为
平面
,所以
平面
.
(2)取
的中点
,连接
,由
是等边三角形,所以
,
又
,所以
,
因为
平面
,
平面
,所以
,
,
所以
,
,
两两垂直,故以
为坐标原点,
,
,
所在直线分别为
,
,
轴建立如图所示的空间直角坐标系,
则
,
,
,
,
故
,
,
.
设平面
的法向量为
,则
,即
,
令
,则
,故
为平面
的一个法向量,
设直线
与平面
所成的角为
,
则
,
所以直线
与平面
所成角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,线段
上有两个动点
,且
,现有如下四个结论:
;
平面
;
三棱锥
的体积为定值;
异面直线
所成的角为定值,
其中正确结论的序号是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
ABCD中,
和
都是等边三角形,平面PAD
平面ABCD,且
,
.
![]()
(1)求证:CD
PA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,
底面ABC,
,
,
,D,E分别为棱BC,PC的中点,点F在棱PA上,设
.
![]()
(1)当
时,求异面直线DF与BE所成角的余弦值;
(2)试确定t的值,使二面角C-EF-D的平面角的余弦值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国法定劳动年龄是
周岁至退休年龄(退休年龄一般指男
周岁,女干部身份
周岁,女工人
周岁).为更好了解我国劳动年龄人口变化情况,有关专家统计了
年我国劳动年龄人口和
周岁人口数量(含预测),得到下表:
![]()
其中
年劳动年龄人口是
亿人,则下列结论不正确的是( )
A.
年劳动年龄人口比
年减少了
万人以上
B.
这
年
周岁人口数的平均数是
亿
C.
年,
周岁人口数每年的减少率都小于同年劳动人口每年的减少率
D.
年这
年
周岁人口数的方差小于这
年劳动人口数的方差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提升学生“数学建模”的核心素养,某校数学兴趣活动小组指导老师给学生布置了一项探究任务:如图,有一张边长为27cm的等边三角形纸片ABC,从中裁出等边三角形纸片
作为底面,从剩余梯形
中裁出三个全等的矩形作为侧面,围成一个无盖的三棱柱(不计损耗).
![]()
(1)若三棱柱的侧面积等于底面积,求此三棱柱的底面边长;
(2)当三棱柱的底面边长为何值时,三棱柱的体积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com