精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)与过焦点且斜率为1的直线交于A,B两点,若|AB|=2.
(1)求抛物线的方程;
(2)过点P(1,
2p
)作两条直线PE,PF交抛物线于点E、F,若两直线互相垂直,求证:EF恒过定点,并求出此点的坐标.
考点:直线与圆锥曲线的关系,抛物线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)设直线AB:y=x-
p
2
,联立方程消去y,得到x2-3px+
p2
4
=0,运用韦达定理和抛物线的定义,即可求出p,从而得到方程;
(2)可设E(y12,y1),F(y22,y2),且P(1,1),由PE与PF垂直,得
PE
PF
=0即有y1y2=-(y1+y2)-2,当y1+y2≠0时,写出直线方程,化简判断直线恒过定点(2,-1);当y1+y2=0时,化简得到直线EF:x=2,即可求出定点坐标.
解答: (1)解:由抛物线y2=2px(p>0)的焦点为(
p
2
,0),
设直线AB:y=x-
p
2

y2=2px
y=x-
p
2
得x2-3px+
p2
4
=0,设A(x1,y1),B(x2,y2),则x1+x2=3p,
由抛物线的定义得,|AB|=x1+x2+p=4p,
又|AB|=2,则p=
1
2

即抛物线方程是y2=x;
(2)证明:由题设可设E(y12,y1),F(y22,y2),且P(1,1),
由PE与PF垂直,得
PE
PF
=0,即(y1-1)(y2-1)+(y12-1)(y22-1)=0,
即(y1-1)(y2-1)[1+(y1+1)(y2+1)]=0,
即有y1y2=-(y1+y2)-2,
当y1+y2≠0时,直线EF:y-y1=
1
y1+y2
(x-y12).
即y=
1
y1+y2
(x+y1y2)=
1
y1+y2
[x-(y1+y2)-2],
则直线恒过定点(2,-1).
当y1+y2=0时,y1=-y2,由y1y2=-(y1+y2)-2=-2,
y12=2,直线EF:x=2,
故EF恒过定点,此点的坐标为(2,-1).
点评:本题考查抛物线的方程、定义和性质,考查直线与抛物线的位置关系,考查联立方程消去一个变量运用韦达定理,及直线恒过定点的问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业有两个生产车间,分别位于边长是1km的等边三角形ABC的顶点A、B处(如图),现要在边AC上的D点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返A车间5次,往返B车间20次,设叉车每天往返的总路程为skm.(注:往返一次即先从仓库到车间再由车间返回仓库)
(Ⅰ)按下列要求确定函数关系式:
①设AD长为x,将s表示成x的函数关系式;
②设∠ADB=θ,将s表示成θ的函数关系式.
(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程s的最小值,并指出点D的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于两个定义域相同的函数f(x),g(x),若存在实数m,n使得h(x)=mf(x)+ng(x),则称函数h(x)是“函数f(x),g(x)的一个线性表达”.
(1)若偶函数h(x)是“函数f(x)=x2+3x,g(x)=3x+4的一个线性表达”,求h(2);
(2)若h(x)=2x2+3x-1是“函数f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一个线性表达”,求a+2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知增函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,其中b∈R,a为正整数,且满足f(2)<
4
5

(1)求函数f(x)的解析式;
(2)求满足f(t2-2t)+f(t)<0的t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,得到如下列联表:
文艺节目新闻节目总计
20至40岁401656
大于40岁202444
总计6040100
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应抽取几名?
(2)是否有99%的把握认为收看文艺节目的观众与年龄有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示.从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,点E为PA中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:平面PBC⊥平面PAB;
(Ⅲ)若∠PDA=
π
4
,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

今年5月,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估,将各连锁店的评估分数按[60,70],[70,80],[80,90],[90,100]分成4组,其频率分布直方图如图所示,集团公司还依据评估得分,将这些连锁店划分为A、B、C、D四个等级,等级评定标准如下表所示:
评估得分[60,70][70,80][80,90][90,100]
评定等级DCBA
(Ⅰ)估计该商业集团各连锁店评估得分的众数和平均数;
(Ⅱ)从评估分数不少于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈[-1,1]的图象是由以原点为圆心的两段圆弧及原点构成(如图所示),则不等式的f(-x)>f(x)+2
3
x的解集
 

查看答案和解析>>

同步练习册答案