精英家教网 > 高中数学 > 题目详情
如图,在多面体ABCDEF中,底面ABCD是梯形,且满足AD=DC=CB=
1
2
AB=a,在直角梯形ACEF中,EF∥
1
2
AC,∠ECA=90°,已知二面角E-AC-B是直二面角.
(Ⅰ)求证:BC⊥AF;
(Ⅱ)求多面体ABCDEF的体积.
考点:棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:(Ⅰ)取AB的中点G,连结CG,证明BC⊥AF,只需证明BC⊥平面ACEF,证明AC⊥BC,利用二面角E-AC-B是直二面角,即可证明;
(Ⅱ)连结DG交AC于H,连结FH,证明DH⊥面ACEF,利用VD-ACEF+VB-ACEF,求出多面体ABCDEF的体积.
解答: (Ⅰ)证明:取AB的中点G,连结CG.由底面ABCD是梯形,知DC∥AG.
又∵DC=
1
2
AB=AG=a,
∴四边形ADCG是平行四边形,得AD=CG=a,
∴CG=
1
2
AB.
∴AC⊥BC.
又∵二面角E-AC-B是直二面角,即平面ACEF⊥平面ABCD,
∴BC⊥平面ACEF.
∴BC⊥AF.…(6分)
(Ⅱ)解:连结DG交AC于H,连结FH.
∵平面ACEF⊥平面ABCD,
由(Ⅰ)知BC⊥面ACEF,DH∥BC,
∴DH⊥面ACEF.
即BC、DH分别是四棱锥B-ACEF、D-ACEF的高.
在Rt△ACB中,AC=
4a2-a2
=
3
a
,EF=
3
2
a.
由EF∥
1
2
AC∥CH,且∠ACE=90°,知四边形HCEF是矩形,
∴FH∥EC,于是FH⊥AH.
在Rt△FAH中,CE=FH=
AF2-AH2
=
a2-(
3
2
a)
2
=
1
2
a

S四边形ACEF=
1
2
(EF+AC)•CE=
1
2
(
3
2
a+
3
a)•
a
2
=
3
3
a2
8

∴V=VD-ACEF+VB-ACEF=
1
3
×
3
3
a2
8
×a+
1
3
×
3
3
a2
8
×
a
2
=
3
3
16
a3
.…(12分)
点评:本题考查线面垂直,线线垂直,考查空间角,考查体积的计算,考查学生分析解决问题的能力,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=cosx+
x2
2
-1.
(Ⅰ)求证:当x≥0时,f(x)≥0;
(Ⅱ)若a∈R,证明:当a≥1时,eax≥sinx-cosx+2对任意的x≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(I)若a=1,求f(x)在区间[0,3]上的值域;
(Ⅱ)若g(x)=f(x)+ax2-a2x,求函数g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,点(n,Sn)在曲线f(x)=x2-4x(x∈N*)上.
(1)求数列{an}的通项公式;
(2)设bn=an•2n-1,求数列{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x+4y-4=0,斜率为1的直线l交圆C与A、B两点.
(1)化圆C的方程为标准方程,并指出圆心和半径;
(2)是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由;
(3)当直线l平行移动时,求△CAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}的前n项和为Sn,若Sn=
n(a1+an)
2

(Ⅰ)求证:{an}是等差数列;
(Ⅱ)若a>0且a2=2a+1,S5=5(3a+1),求证:
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
n
(1+
a
2
)(1+
2n+1
2
a)

查看答案和解析>>

科目:高中数学 来源: 题型:

假设设备的使用年限x(年)与维修费用y(万元)有如下关系:
x23456
y2.23.85.56.57.0
(1)求样本中心;
(2)如果y与x之间具有线性相关关系,求回归直线方程
y
=bx+a.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=-x2+mx在(-∞,1]上是增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),
b
=(-2,3 ),若λ
a
-
b
a
垂直,则实数λ=
 

查看答案和解析>>

同步练习册答案