精英家教网 > 高中数学 > 题目详情
14.与直线x+2y+4=0垂直的抛物线y=x2的切线方程是(  )
A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=0

分析 设切点为(m,n),求出导数,求得切线的斜率,再由两直线垂直的条件可得切线的斜率,解得m=1,n=1,k=2,由点斜式方程即可得到切线方程.

解答 解:设切点为(m,n),
y=x2的导数为y′=2x,
则切线的斜率为k=2m,
由于切线与直线x+2y+4=0垂直,
则k=2m=2,
解得m=1,n=1,k=2,
即有切线的方程为y-1=2(x-1),
即为2x-y-1=0,
故选:D.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义和两直线垂直的条件,正确求出导数和设出切点是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若曲线f(x)=x2-3x-alnx存在与直线x+y-1=0互相垂直的切线,则实数a的取值范围是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线 y=xex+2x+1在点(0,1)处的切线方程为(  )
A.y=3x+lB.y=3x-lC.y=2x+lD.y=2x-l

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在[0,+∞]上,且以3π为周期的函数,若当x∈[0,3π]时,f(x)=$\left\{\begin{array}{l}{sinx,x∈[0,π]}\\{2sin(x-π),x∈(π,2π]}\\{4sin(x-2π),x∈(2π,3π]}\end{array}\right.$
(1)试写出函数y=f(x)在(3(k-1)π,3kπ](k∈N*)上的解析式;
(2)求当x∈[0,2015]时,方程|lgx|=f(x)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(3-ax)(a>0,a≠1)在区间[1,2]上是单调函数,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:Sn,S2n-Sn,S3n-S2n,…成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+x2=1(a>1)与抛物线C${\;}_{{2}_{\;}}$:x2=4y有相同焦点F1
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.2lg10+(lg5+lg2)2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ACB=$\frac{π}{3}$,点D是线段BC的中点.
(Ⅰ)求证:A1C∥平面AB1D;
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求三棱锥A1-AB1D的体积.

查看答案和解析>>

同步练习册答案