精英家教网 > 高中数学 > 题目详情
7.在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥$\frac{1}{2}$”的概率,P2为事件“|x-y|≤$\frac{1}{2}$”的概率,P3为事件“xy≤$\frac{1}{2}$”的概率,则(  )
A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P1

分析 作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可.

解答 解:分别作出事件对应的图象如图(阴影部分):
P1:D(0,$\frac{1}{2}$),F($\frac{1}{2}$,0),A(0,1),B(1,1),C(1,0),
则阴影部分的面积S1=1×1-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=1-$\frac{1}{8}$=$\frac{7}{8}$,
S2=1×1-2×$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=1-$\frac{1}{4}$=$\frac{3}{4}$,
S3=1×$\frac{1}{2}$+${∫}_{\frac{1}{2}}^{1}$$\frac{\frac{1}{2}}{x}$dx=$\frac{1}{2}$+$\frac{1}{2}$lnx|${\;}_{\frac{1}{2}}^{1}$=$\frac{1}{2}$-$\frac{1}{2}$ln$\frac{1}{2}$=$\frac{1}{2}$+$\frac{1}{2}$ln2,
∴S2<S3<S1
即P2<P3<P1
故选:B.

点评 本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=10$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+10cos2$\frac{x}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{6}$个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的 最大值为2.
(i)求函数g(x)的解析式;
(ii)证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.
(1)求当天小王的该银行卡被锁定的概率;
(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.
(1)求a+b+c的值;
(2)求$\frac{1}{4}$a2+$\frac{1}{9}$b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x∈R,则“1<x<2”是“|x-2|<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=-(x-$\frac{1}{x}$)cosx(-π≤x≤π且x≠0)的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC的内角∠A、∠B、∠C所对的边为a、b、c,则“ab>c2”是“∠C<$\frac{π}{3}$”的充分非必要条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).

查看答案和解析>>

同步练习册答案