12£®Ä³Í¬Ñ§Óá°Îåµã·¨¡±»­º¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©ÔÚijһ¸öÖÜÆÚÄÚµÄͼÏóʱ£¬ÁÐ±í²¢ÌîÈëÁ˲¿·ÖÊý¾Ý£¬Èç±í£º
¦Øx+¦Õ0$\frac{¦Ð}{2}$¦Ð$\frac{3¦Ð}{2}$2¦Ð
x$\frac{¦Ð}{3}$$\frac{5¦Ð}{6}$
Asin£¨¦Øx+¦Õ£©05-50
£¨1£©Ç뽫ÉϱíÊý¾Ý²¹³äÍêÕû£¬ÌîдÔÚÏàӦλÖ㬲¢Ö±½Óд³öº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©½«y=f£¨x£©Í¼ÏóÉÏËùÓеãÏò×óƽÐÐÒÆ¶¯¦È£¨¦È£¾0£©¸öµ¥Î»³¤¶È£¬µÃµ½y=g£¨x£©µÄͼÏó£®Èôy=g£¨x£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ£¨$\frac{5¦Ð}{12}$£¬0£©£¬Çó¦ÈµÄ×îСֵ£®

·ÖÎö £¨1£©¸ù¾Ý±íÖÐÒÑÖªÊý¾Ý£¬½âµÃA=5£¬¦Ø=2£¬¦Õ=-$\frac{¦Ð}{6}$£®´Ó¶ø¿É²¹È«Êý¾Ý£¬½âµÃº¯Êý±í´ïʽΪf£¨x£©=5sin£¨2x-$\frac{¦Ð}{6}$£©£®
£¨2£©ÓÉ£¨¢ñ£©¼°º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂɵÃg£¨x£©=5sin£¨2x+2¦È-$\frac{¦Ð}{6}$£©£®Áî2x+2¦È-$\frac{¦Ð}{6}$=k¦Ð£¬½âµÃx=$\frac{k¦Ð}{2}+\frac{¦Ð}{12}-¦È$£¬k¡ÊZ£®Áî$\frac{k¦Ð}{2}+\frac{¦Ð}{12}-¦È$=$\frac{5¦Ð}{12}$£¬½âµÃ¦È=$\frac{k¦Ð}{2}-\frac{¦Ð}{3}$£¬k¡ÊZ£®Óɦȣ¾0¿ÉµÃ½â£®

½â´ð ½â£º£¨1£©¸ù¾Ý±íÖÐÒÑÖªÊý¾Ý£¬½âµÃA=5£¬¦Ø=2£¬¦Õ=-$\frac{¦Ð}{6}$£®Êý¾Ý²¹È«ÈçÏÂ±í£º

¦Øx+¦Õ0$\frac{¦Ð}{2}$¦Ð$\frac{3¦Ð}{2}$2¦Ð
x$\frac{¦Ð}{12}$$\frac{¦Ð}{3}$$\frac{7¦Ð}{12}$$\frac{5¦Ð}{6}$$\frac{13¦Ð}{12}$
Asin£¨¦Øx+¦Õ£©050-50
ÇÒº¯Êý±í´ïʽΪf£¨x£©=5sin£¨2x-$\frac{¦Ð}{6}$£©£®
£¨2£©ÓÉ£¨¢ñ£©Öªf£¨x£©=5sin£¨2x-$\frac{¦Ð}{6}$£©£¬µÃg£¨x£©=5sin£¨2x+2¦È-$\frac{¦Ð}{6}$£©£®
ÒòΪy=sinxµÄ¶Ô³ÆÖÐÐÄΪ£¨k¦Ð£¬0£©£¬k¡ÊZ£®
Áî2x+2¦È-$\frac{¦Ð}{6}$=k¦Ð£¬½âµÃx=$\frac{k¦Ð}{2}+\frac{¦Ð}{12}-¦È$£¬k¡ÊZ£®
ÓÉÓÚº¯Êýy=g£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{5¦Ð}{12}$£¬0£©³ÉÖÐÐĶԳƣ¬Áî$\frac{k¦Ð}{2}+\frac{¦Ð}{12}-¦È$=$\frac{5¦Ð}{12}$£¬
½âµÃ¦È=$\frac{k¦Ð}{2}-\frac{¦Ð}{3}$£¬k¡ÊZ£®Óɦȣ¾0¿ÉÖª£¬µ±K=1ʱ£¬¦ÈÈ¡µÃ×îСֵ$\frac{¦Ð}{6}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂɵÄÓ¦Óã¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚÈýÀâסABC-A1B1C1ÖУ¬¡ÏBAC=90¡ã£¬ÆäÕýÊÓͼºÍ²àÊÓͼ¶¼ÊDZ߳¤Îª1µÄÕý·½ÐΣ¬¸©ÊÓͼÊÇÖ±½Ç±ß³¤Îª1µÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÉèM£¬N£¬P·Ö±ðÊÇAB£¬BC£¬B1C1µÄÖе㣬ÔòÈýÀâ×¶P-A1MNµÄÌå»ýÊÇ$\frac{1}{24}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÎªÁ˽âijÉçÇø¾ÓÃñµÄ¼ÒÍ¥ÄêÊÕÈëÓëÄêÖ§³öµÄ¹ØÏµ£¬Ëæ»úµ÷²éÁ˸ÃÉçÇø5»§¼ÒÍ¥£¬µÃµ½ÈçÏÂͳ¼ÆÊý¾Ý±í£º
ÊÕÈëx£¨ÍòÔª£©8.28.610.011.311.9
Ö§³öy£¨ÍòÔª£©6.27.58.08.59.8
¸ù¾ÝÉϱí¿ÉµÃ»Ø¹éÖ±Ïß·½³Ì$\hat y=\hat bx+\hat a$£¬ÆäÖÐ$\hat b=0.76£¬\hat a=\overline y-\hat b\overline x$£¬¾Ý´Ë¹À¼Æ£¬¸ÃÉçÇøÒ»»§ÊÕÈëΪ15ÍòÔª¼ÒÍ¥ÄêÖ§³öΪ£¨¡¡¡¡£©
A£®11.4ÍòÔªB£®11.8ÍòÔªC£®12.0ÍòÔªD£®12.2ÍòÔª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¾ØÕóA=$£¨\begin{array}{l}{2}&{1}\\{4}&{3}\end{array}£©$£¬B=$£¨\begin{array}{l}{1}&{1}\\{0}&{-1}\end{array}£©$
£¨1£©ÇóAµÄÄæ¾ØÕóA-1£»
£¨2£©Çó¾ØÕóC£¬Ê¹µÃAC=B£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÇø¼ä[0£¬1]ÉÏËæ»úÈ¡Á½¸öÊýx£¬y£¬¼ÇP1Ϊʼþ¡°x+y¡Ý$\frac{1}{2}$¡±µÄ¸ÅÂÊ£¬P2Ϊʼþ¡°|x-y|¡Ü$\frac{1}{2}$¡±µÄ¸ÅÂÊ£¬P3Ϊʼþ¡°xy¡Ü$\frac{1}{2}$¡±µÄ¸ÅÂÊ£¬Ôò£¨¡¡¡¡£©
A£®P1£¼P2£¼P3B£®P2£¼P3£¼P1C£®P3£¼P1£¼P2D£®P3£¼P2£¼P1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-2¡Ü0}\\{x-2y¡Ü0}\\{x+2y-8¡Ü0}\end{array}\right.$ÔòÄ¿±êº¯Êýz=3x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªa£¾0£¬b£¾0£¬ab=8£¬Ôòµ±aµÄֵΪ4ʱ£¬log2a•log2£¨2b£©È¡µÃ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®º¯Êýf£¨x£©=sin2x+sinxcosx+1µÄ×îСÕýÖÜÆÚÊǦУ¬×îСֵÊÇ$\frac{3-\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô¸´ÊýzÂú×ãz•£¨1+i£©=2£¨ÆäÖÐiΪÐéÊýµ¥Î»£©£¬Ôò|z+1|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸